@misc{BaldKeller2014, author = {Bald, Ilko and Keller, Adrian}, title = {Molecular processes studied at a single-molecule level using DNA origami nanostructures and atomic force microscopy}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {9}, issn = {1866-8372}, doi = {10.25932/publishup-47584}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-475843}, pages = {13803 -- 13823}, year = {2014}, abstract = {DNA origami nanostructures allow for the arrangement of different functionalities such as proteins, specific DNA structures, nanoparticles, and various chemical modifications with unprecedented precision. The arranged functional entities can be visualized by atomic force microscopy (AFM) which enables the study of molecular processes at a single-molecular level. Examples comprise the investigation of chemical reactions, electron-induced bond breaking, enzymatic binding and cleavage events, and conformational transitions in DNA. In this paper, we provide an overview of the advances achieved in the field of single-molecule investigations by applying atomic force microscopy to functionalized DNA origami substrates.}, language = {en} } @article{VogelEbelSchuermannetal.2019, author = {Vogel, Stefanie and Ebel, Kenny and Sch{\"u}rmann, Robin Mathis and Heck, Christian and Meiling, Till and Milosavljevic, Aleksandar R. and Giuliani, Alexandre and Bald, Ilko}, title = {Vacuum-UV and Low-Energy Electron-Induced DNA Strand Breaks}, series = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, volume = {20}, journal = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1439-4235}, doi = {10.1002/cphc.201801152}, pages = {823 -- 830}, year = {2019}, abstract = {DNA is effectively damaged by radiation, which can on the one hand lead to cancer and is on the other hand directly exploited in the treatment of tumor tissue. DNA strand breaks are already induced by photons having an energy below the ionization energy of DNA. At high photon energies, most of the DNA strand breaks are induced by low-energy secondary electrons. In the present study we quantified photon and electron induced DNA strand breaks in four different 12mer oligonucleotides. They are irradiated directly with 8.44 eV vacuum ultraviolet (VUV) photons and 8.8 eV low energy electrons (LEE). By using Si instead of VUV transparent CaF2 as a substrate the VUV exposure leads to an additional release of LEEs, which have a maximum energy of 3.6 eV and can significantly enhance strand break cross sections. Atomic force microscopy is used to visualize strand breaks on DNA origami platforms and to determine absolute values for the strand break cross sections. Upon irradiation with 8.44 eV photons all the investigated sequences show very similar strand break cross sections in the range of 1.7-2.3x10(-16) cm(2). The strand break cross sections for LEE irradiation at 8.8 eV are one to two orders of magnitude larger than the ones for VUV photons, and a slight sequence dependence is observed. The sequence dependence is even more pronounced for LEEs with energies <3.6 eV. The present results help to assess DNA damage by photons and electrons close to the ionization threshold.}, language = {en} } @article{SchuermannTseringTanzeretal.2017, author = {Sch{\"u}rmann, Robin Mathis and Tsering, Thupten and Tanzer, Katrin and Denifl, Stephan and Kumar, S. V. K. and Bald, Ilko}, title = {Resonant Formation of Strand Breaks in Sensitized Oligonucleotides Induced by Low-Energy Electrons (0.5-9 eV)}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {56}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201705504}, pages = {10952 -- 10955}, year = {2017}, abstract = {Halogenated nucleobases are used as radiosensitizers in cancer radiation therapy, enhancing the reactivity of DNA to secondary low-energy electrons (LEEs). LEEs induce DNA strand breaks at specific energies (resonances) by dissociative electron attachment (DEA). Although halogenated nucleobases show intense DEA resonances at various electron energies in the gas phase, it is inherently difficult to investigate the influence of halogenated nucleobases on the actual DNA strand breakage over the broad range of electron energies at which DEA can take place (<12 eV). By using DNA origami nanostructures, we determined the energy dependence of the strand break cross-section for oligonucleotides modified with 8-bromoadenine ((8Br)A). These results were evaluated against DEA measurements with isolated (8Br)A in the gas phase. Contrary to expectations, the major contribution to strand breaks is from resonances at around 7 eV while resonances at very low energy (<2 eV) have little influence on strand breaks.}, language = {en} } @article{RackwitzKopyraDabkowskaetal.2016, author = {Rackwitz, Jenny and Kopyra, Janina and Dabkowska, Iwona and Ebel, Kenny and Rankovic, MiloS Lj. and Milosavljevic, Aleksandar R. and Bald, Ilko}, title = {Sensitizing DNA Towards Low-Energy Electrons with 2-Fluoroadenine}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {55}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201603464}, pages = {10248 -- 10252}, year = {2016}, abstract = {2-Fluoroadenine ((2F)A) is a therapeutic agent, which is suggested for application in cancer radiotherapy. The molecular mechanism of DNA radiation damage can be ascribed to a significant extent to the action of low-energy (<20 eV) electrons (LEEs), which damage DNA by dissociative electron attachment. LEE induced reactions in (2F)A are characterized both isolated in the gas phase and in the condensed phase when it is incorporated into DNA. Information about negative ion resonances and anion-mediated fragmentation reactions is combined with an absolute quantification of DNA strand breaks in (2F)A-containing oligonucleotides upon irradiation with LEEs. The incorporation of (2F)A into DNA results in an enhanced strand breakage. The strand-break cross sections are clearly energy dependent, whereas the strand-break enhancements by (2F)A at 5.5, 10, and 15 eV are very similar. Thus, (2F)A can be considered an effective radiosensitizer operative at a wide range of electron energies.}, language = {en} } @misc{EbelBald2020, author = {Ebel, Kenny and Bald, Ilko}, title = {Length and Energy Dependence of Low-Energy Electron-Induced Strand Breaks in Poly(A) DNA}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {814}, issn = {1866-8372}, doi = {10.25932/publishup-44412}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-444125}, pages = {13}, year = {2020}, abstract = {The DNA in living cells can be effectively damaged by high-energy radiation, which can lead to cell death. Through the ionization of water molecules, highly reactive secondary species such as low-energy electrons (LEEs) with the most probable energy around 10 eV are generated, which are able to induce DNA strand breaks via dissociative electron attachment. Absolute DNA strand break cross sections of specific DNA sequences can be efficiently determined using DNA origami nanostructures as platforms exposing the target sequences towards LEEs. In this paper, we systematically study the effect of the oligonucleotide length on the strand break cross section at various irradiation energies. The present work focuses on poly-adenine sequences (d(A₄), d(A₈), d(A₁₂), d(A₁₆), and d(A₂₀)) irradiated with 5.0, 7.0, 8.4, and 10 eV electrons. Independent of the DNA length, the strand break cross section shows a maximum around 7.0 eV electron energy for all investigated oligonucleotides confirming that strand breakage occurs through the initial formation of negative ion resonances. When going from d(A₄) to d(A₁₆), the strand break cross section increases with oligonucleotide length, but only at 7.0 and 8.4 eV, i.e., close to the maximum of the negative ion resonance, the increase in the strand break cross section with the length is similar to the increase of an estimated geometrical cross section. For d(A₂₀), a markedly lower DNA strand break cross section is observed for all electron energies, which is tentatively ascribed to a conformational change of the dA₂₀ sequence. The results indicate that, although there is a general length dependence of strand break cross sections, individual nucleotides do not contribute independently of the absolute strand break cross section of the whole DNA strand. The absolute quantification of sequence specific strand breaks will help develop a more accurate molecular level understanding of radiation induced DNA damage, which can then be used for optimized risk estimates in cancer radiation therapy.}, language = {en} } @article{EbelBald2020, author = {Ebel, Kenny and Bald, Ilko}, title = {Length and Energy Dependence of Low-Energy Electron-Induced Strand Breaks in Poly(A) DNA}, series = {International Journal of Molecular Sciences}, volume = {21}, journal = {International Journal of Molecular Sciences}, number = {1}, publisher = {Molecular Diversity Preservation International}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms21010111}, pages = {11}, year = {2020}, abstract = {The DNA in living cells can be effectively damaged by high-energy radiation, which can lead to cell death. Through the ionization of water molecules, highly reactive secondary species such as low-energy electrons (LEEs) with the most probable energy around 10 eV are generated, which are able to induce DNA strand breaks via dissociative electron attachment. Absolute DNA strand break cross sections of specific DNA sequences can be efficiently determined using DNA origami nanostructures as platforms exposing the target sequences towards LEEs. In this paper, we systematically study the effect of the oligonucleotide length on the strand break cross section at various irradiation energies. The present work focuses on poly-adenine sequences (d(A₄), d(A₈), d(A₁₂), d(A₁₆), and d(A₂₀)) irradiated with 5.0, 7.0, 8.4, and 10 eV electrons. Independent of the DNA length, the strand break cross section shows a maximum around 7.0 eV electron energy for all investigated oligonucleotides confirming that strand breakage occurs through the initial formation of negative ion resonances. When going from d(A₄) to d(A₁₆), the strand break cross section increases with oligonucleotide length, but only at 7.0 and 8.4 eV, i.e., close to the maximum of the negative ion resonance, the increase in the strand break cross section with the length is similar to the increase of an estimated geometrical cross section. For d(A₂₀), a markedly lower DNA strand break cross section is observed for all electron energies, which is tentatively ascribed to a conformational change of the dA₂₀ sequence. The results indicate that, although there is a general length dependence of strand break cross sections, individual nucleotides do not contribute independently of the absolute strand break cross section of the whole DNA strand. The absolute quantification of sequence specific strand breaks will help develop a more accurate molecular level understanding of radiation induced DNA damage, which can then be used for optimized risk estimates in cancer radiation therapy.}, language = {en} } @misc{BaldKeller2014, author = {Bald, Ilko and Keller, Adrian}, title = {Molecular processes studied at a single-molecule level using DNA origami nanostructures and atomic force microscopy}, series = {Molecules}, volume = {19}, journal = {Molecules}, number = {9}, publisher = {MDPI}, address = {Basel}, issn = {1420-3049}, doi = {10.3390/molecules190913803}, pages = {13803 -- 13823}, year = {2014}, abstract = {DNA origami nanostructures allow for the arrangement of different functionalities such as proteins, specific DNA structures, nanoparticles, and various chemical modifications with unprecedented precision. The arranged functional entities can be visualized by atomic force microscopy (AFM) which enables the study of molecular processes at a single-molecular level. Examples comprise the investigation of chemical reactions, electron-induced bond breaking, enzymatic binding and cleavage events, and conformational transitions in DNA. In this paper, we provide an overview of the advances achieved in the field of single-molecule investigations by applying atomic force microscopy to functionalized DNA origami substrates.}, language = {en} }