@misc{AntonLaschewskyWard1995, author = {Anton, Peter and Laschewsky, Andr{\´e} and Ward, M. D.}, title = {Solubilization control by redox-switching of polysoaps}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-17336}, year = {1995}, abstract = {Reversible changes in the self-organization of polysoaps may be induced by controlling their charge numbers via covalently bound redox moieties. This is illustrated with two viologen polysoaps, which in response to an electrochemical stimulus, change their solubility and aggregation in water, leading from homogeneously dissolved and aggregated molecules to collapsed ones and vice verse. Using the electrochemical quartz crystal microbalance (EQCM), it could be shown that the reversibility of this process is better than 95\% in 16 cycles.}, language = {en} } @article{AstRutledgeTodd2012, author = {Ast, Sandra and Rutledge, Peter J. and Todd, Matthew H.}, title = {Reversing the triazole topology in a cyclam-triazole-dye ligand gives a 10-fold brighter signal response to Zn2+ in aqueous solution}, series = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, journal = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, number = {34}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-1948}, doi = {10.1002/ejic.201201072}, pages = {5611 -- 5615}, year = {2012}, abstract = {The fluorescence response of a set of cyclam-triazole-dye ligands is controlled by the appended dye, but simple reversal of the triazole topology affords a novel probe for Zn2+ with a longer fluorescence lifetime and higher fluorescence quantum yield upon Zn2+ binding ( = 2.0 ns, Phi(f) = 0.76).}, language = {en} } @article{BrietzkeKellingSchildeetal.2016, author = {Brietzke, Thomas Martin and Kelling, Alexandra and Schilde, Uwe and Mickler, Wulfhard and Holdt, Hans-J{\"u}rgen}, title = {Heterodinuclear Ruthenium(II) Complexes of the Bridging Ligand 1,6,7,12-Tetraazaperylene with Iron(II), Cobalt(II), Nickel(II), as well as Palladium(II) and Platinum(II)}, series = {Zeitschrift f{\~A}¼r anorganische und allgemeine Chemie}, volume = {642}, journal = {Zeitschrift f{\~A}¼r anorganische und allgemeine Chemie}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0044-2313}, doi = {10.1002/zaac.201500645}, pages = {8 -- 13}, year = {2016}, abstract = {The first heterodinuclear ruthenium(II) complexes of the 1,6,7,12-tetraazaperylene (tape) bridging ligand with iron(II), cobalt(II), and nickel(II) were synthesized and characterized. The metal coordination sphere in this complexes is filled by the tetradentate N,N-dimethyl-2,11-diaza[3.3](2,6)-pyridinophane (L-N4Me2) ligand, yielding complexes of the general formula [(L-N4Me2)Ru(mu-tape)M(L-N4Me2)](ClO4)(2)(PF6)(2) with M = Fe {[2](ClO4)(2)(PF6)(2)}, Co {[3](ClO4)(2)(PF6)(2)}, and Ni {[4](ClO4)(2)(PF6)(2)}. Furthermore, the heterodinuclear tape ruthenium(II) complexes with palladium(II)- and platinum(II)-dichloride [(bpy)(2)Ru(-tape)PdCl2](PF6)(2) {[5](PF6)(2)} and [(dmbpy)(2)Ru(-tape)PtCl2](PF6)(2) {[6](PF6)(2)}, respectively were also prepared. The molecular structures of the complex cations [2](4+) and [4](4+) were discussed on the basis of the X-ray structures of [2](ClO4)(4)MeCN and [4](ClO4)(4)MeCN. The electrochemical behavior and the UV/Vis absorption spectra of the heterodinuclear tape ruthenium(II) complexes were explored and compared with the data of the analogous mono- and homodinuclear ruthenium(II) complexes of the tape bridging ligand.}, language = {en} }