@article{SulyanovaShabalinZozulyaetal.2015, author = {Sulyanova, Elena A. and Shabalin, Anatoly and Zozulya, Alexey V. and Meijer, Janne-Mieke and Dzhigaev, Dmitry and Gorobtsov, Oleg and Kurta, Ruslan P. and Lazarev, Sergey and Lorenz, Ulf and Singer, Andrej and Yefanov, Oleksandr and Zaluzhnyy, Ivan and Besedin, Ilya and Sprung, Michael and Petukhov, Andrei V. and Vartanyants, Ivan A.}, title = {Structural Evolution of Colloidal Crystal Films in the Process of Melting Revealed by Bragg Peak Analysis}, series = {Langmuir}, volume = {31}, journal = {Langmuir}, number = {19}, publisher = {American Chemical Society}, address = {Washington}, issn = {0743-7463}, doi = {10.1021/la504652z}, pages = {5274 -- 5283}, year = {2015}, abstract = {In situ X-ray diffraction studies of structural evolution of colloidal crystal films formed by polystyrene spherical particles upon incremental heating are reported. The Bragg peak parameters, such as peak position, integrated intensity, and radial and azimuthal widths were analyzed as a function of temperature. A quantitative study of colloidal crystal lattice distortions and mosaic spread as a function of temperature was carried out using Williamson-Hall plots based on mosaic block model. The temperature dependence of the diameter of polystyrene particles was obtained from the analysis of Bragg peaks, and the form factor contribution extracted from the diffraction patterns. Four stages of structural evolution in a colloidal crystal upon heating were identified. Based on this analysis, a model of the heating and melting process in the colloidal crystal film is suggested.}, language = {en} }