@article{KreyeTothMeier2011, author = {Kreye, Oliver and Toth, Tommy and Meier, Michael A. R.}, title = {Poly-alpha,beta-unsaturated aldehydes derived from castor oil via ADMET polymerization}, series = {European journal of lipid science and technology}, volume = {113}, journal = {European journal of lipid science and technology}, number = {1}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1438-7697}, doi = {10.1002/ejlt.201000108}, pages = {31 -- 38}, year = {2011}, abstract = {10-Undecenal, derived by pyrolysis and reduction from castor oil, was almost quantitatively transformed into the corresponding aldol condensation product under basic conditions. This alpha,omega-diene monomer was polymerized using acyclic diene metathesis (ADMET) polymerization. In a catalyst screening, four of nine different ruthenium-based metathesis catalysts showed good reactivity under neat conditions at 80 degrees C in the presence of 1,4-benzoquinone and polymers with molecular weights up to 11 kDa were formed. Furthermore, the (1)H NMR spectra showed that the metathesis catalysts tolerate the alpha,beta-unsaturated aldehyde function and due to the addition of benzoquinone, the degree of double bond isomerization was low. Further experiments investigating reduced catalyst amounts (down to 0.2 mol\%) and the temperature dependence of these ADMET polymerizations gave also satisfying results for the formation of poly-alpha,beta-unsaturated aldehydes. Moreover, ADMET polymerizations with different amounts of methyl 10-undecenoate as chain-stopper were performed and the integrals of the corresponding (1)H NMR spectra allowed the determination of an absolute degree of polymerization. Finally, a reduction of a poly-alpha,beta-unsaturated aldehyde with sodium borohydride was accomplished. The resulting poly-(allyl alcohol) could be a useful compound in the generation of polymer networks like polyesters, polyurethanes, and polycarbonates and thus be of high interest in materials research.}, language = {en} } @article{KreyeTothMeier2011, author = {Kreye, Oliver and Toth, Tommy and Meier, Michael A. R.}, title = {Introducing multicomponent reactions to polymer science passerini reactions of renewable monomers}, series = {Journal of the American Chemical Society}, volume = {133}, journal = {Journal of the American Chemical Society}, number = {6}, publisher = {American Chemical Society}, address = {Washington}, issn = {0002-7863}, doi = {10.1021/ja1113003}, pages = {1790 -- 1792}, year = {2011}, abstract = {Combination of the Passerini three component-reaction (3CR) and olefin metathesis led to the formation of poly[1-(alkyl carbamoyl)alkyl alkanoates], a new class of polyesters with amide moieties in their side chain, from renewable resources. Two different approaches were studied and compared to each other. First, monomers were synthesized by the Passerini-3CR and then polymerized via acyclic diene metathesis. Alternatively, bifunctional monomers were synthesized by self-metathesis and then polymerized by Passerini-3CR. Both approaches led to the formation of high-molecular-weight polymers. Moreover, Passerini-3CRs were shown to be a versatile grafting-onto method. The results clearly demonstrate that the Passerini-3CR offers an interesting new access to monomers and polymers and thus broadens the synthetic portfolio of polymer science.}, language = {en} } @article{KreyeTothMeier2011, author = {Kreye, Oliver and Toth, Tommy and Meier, Michael A. R.}, title = {Copolymers derived from rapeseed derivatives via ADMET and thiol-ene addition}, series = {European polymer journal}, volume = {47}, journal = {European polymer journal}, number = {9}, publisher = {Elsevier}, address = {Oxford}, issn = {0014-3057}, doi = {10.1016/j.eurpolymj.2011.06.012}, pages = {1804 -- 1816}, year = {2011}, abstract = {Novel (co)polymers were synthesized from substances obtained from rapeseed via ADMET and thiol-ene additions. alpha,omega-Dienes derived from oleic and erucic acid were copolymerized with a ferulic acid derivative, a representative phenolic acid (p-hydroxycinnamic acid) present, for instance, in rapeseed cake. Copolymers with different ratios of these monomers were prepared via two different routes (ADMET and thiol-ene) and studied in detail. Both monomer and polymer synthesis were optimized in order to achieve high yielding synthetic procedures that meet the requirements of green chemistry. Some thermal properties of the resulting copolymer series were then studied and correlated to the co-monomer composition.}, language = {en} } @article{KreyeTueruencSehlingeretal.2012, author = {Kreye, Oliver and T{\"u}r{\"u}nc, Oguz and Sehlinger, Ansgar and Rackwitz, Jenny and Meier, Michael A. R.}, title = {Structurally diverse polyamides obtained from monomers derived via the Ugi multicomponent reaction}, series = {Chemistry - a European journal}, volume = {18}, journal = {Chemistry - a European journal}, number = {18}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.201103341}, pages = {5767 -- 5776}, year = {2012}, abstract = {The combination of the Ugi four-component reaction (Ugi-4CR) with acyclic diene metathesis (ADMET) or thiolene polymerization led to the formation of poly-1-(alkylcarbamoyl) carboxamides, a new class of substituted polyamides with amide moieties in the polymer backbone, as well as its side chains. 10-Undecenoic acid, obtained by pyrolysis of ricinoleic acid, the main fatty acid of castor oil, was used as the key renewable building block. The use of different primary amines, as well as isonitriles (isocyanides) for the described Ugi reactions provided monomers with high structural diversity. Furthermore, the possibility of versatile post-modification of functional groups in the side chains of the corresponding polymers should be of considerable interest in materials science. The obtained monomers were polymerized by ADMET, as well as thiolene, chemistry and all polymers were fully characterized. Finally, ortho-nitrobenzylamide-containing polyamides obtained by this route were shown to be photoresponsive and exhibited a dramatic change of their properties upon irradiation with light.}, language = {en} } @article{vonCzapiewskiKreyeMutluetal.2013, author = {von Czapiewski, Marc and Kreye, Oliver and Mutlu, Hatice and Meier, Michael A. R.}, title = {Cross-metathesis versus palladium-catalyzed C-H activation acetoxy ester functionalization of unsaturated fatty acid methyl esters}, series = {European journal of lipid science and technology}, volume = {115}, journal = {European journal of lipid science and technology}, number = {1}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1438-7697}, doi = {10.1002/ejlt.201200196}, pages = {76 -- 85}, year = {2013}, abstract = {Two synthetic approaches to functionalize plant oil derived platform chemicals were investigated. For this purpose, methyl 10-undecenoate, which can be obtained by pyrolysis of castor oil, was used in olefin cross-metathesis under neat conditions forming an unsaturated a,?-acetoxy ester. A catalyst screening with 11 different ruthenium-based metathesis catalysts was performed, revealing that well-suited catalysts allow for full conversion and very good cross-metathesis selectivity at a loading of only 0.5?mol\%. An alternative possibility to the aforementioned synthetic method is a palladium-catalyzed reaction of methyl 10-undecenoate with acetic acid in the presence of dimethyl sulfoxide. Here, the formation of linear and branched unsaturated acetoxy esters as well as a ketone was observed. The conversion as well as the selectivity of this procedure was studied under different reaction conditions and compared to the cross-metathesis results. Based on the successful functionalization of methyl 10-undecenoate, methyl oleate was investigated in this palladium-catalyzed C?H activation reaction. Due to the lower reactivity of the internal double bond the desired acetoxy ester was only obtained in moderate conversion in this case. In summary, this study clearly shows that palladium-catalyzed functionalization of unsaturated fatty compounds via C?H activation is an attractive alternative to the well-established olefin cross-metathesis procedure.}, language = {en} }