@article{BehrendtSchlaad2018, author = {Behrendt, Felix Nicolas and Schlaad, Helmut}, title = {Entropy-Driven Ring-Opening Disulfide Metathesis Polymerization for the Synthesis of Functional Poly(disulfide)s}, series = {Macromolecular rapid communications}, volume = {39}, journal = {Macromolecular rapid communications}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1022-1336}, doi = {10.1002/marc.201700735}, pages = {4}, year = {2018}, abstract = {Metal-free entropy-driven disulfide metathesis polymerization of unsaturated L-cystine based macrocycles produces high-molar-mass heterofunctional poly(disulfide)s, i.e., poly(ester-disulfide-alkene) and poly(amide-disulfide-alkene); M-w(app) = 44-60 kDa, (sic) > 1.7. The polymerization is fast and reaches equilibrium within 1-5 minutes (monomer conversion 70-90\%) in polar aprotic solvents such as N,N-dimethylacetamide, dimethylsulfoxide, or y-valerolactone. Thiol-terminated polymers are stable in bulk or when dissolved in weakly polar solvents, but rapidly depolymerize in dilute polar solution.}, language = {en} } @article{DebsharmaBehrendtLaschewskyetal.2019, author = {Debsharma, Tapas and Behrendt, Felix Nicolas and Laschewsky, Andre and Schlaad, Helmut}, title = {Ring-opening metathesis polymerization of biomass-derived levoglucosenol}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker}, volume = {58}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker}, number = {20}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201814501}, pages = {6718 -- 6721}, year = {2019}, abstract = {The readily available cellulose-derived bicyclic compound levoglucosenol was polymerized through ring-opening metathesis polymerization (ROMP) to yield polylevoglucosenol as a novel type of biomass-derived thermoplastic polyacetal, which, unlike polysaccharides, contains cyclic as well as linear segments in its main chain. High-molar-mass polyacetals with apparent weight-average molar masses of up to 100kgmol(-1) and dispersities of approximately 2 were produced despite the non-living/controlled character of the polymerization due to irreversible deactivation or termination of the catalyst/active chain ends. The resulting highly functionalized polyacetals are glassy in bulk with a glass transition temperature of around 100 degrees C. In analogy to polysaccharides, polylevoglucosenol degrades slowly in an acidic environment.}, language = {en} }