@article{RotheZhaoMuelleretal.2021, author = {Rothe, Martin and Zhao, Yuhang and M{\"u}ller, Johannes and Kewes, G{\"u}nter and Koch, Christoph T. and Lu, Yan and Benson, Oliver}, title = {Self-assembly of plasmonic nanoantenna-waveguide structures for subdiffractional chiral sensing}, series = {ACS nano}, volume = {15}, journal = {ACS nano}, number = {1}, publisher = {American Chemical Society}, address = {Washington}, issn = {1936-0851}, doi = {10.1021/acsnano.0c05240}, pages = {351 -- 361}, year = {2021}, abstract = {Spin-momentum locking is a peculiar effect in the near-field of guided optical or plasmonic modes. It can be utilized to map the spinning or handedness of electromagnetic fields onto the propagation direction. This motivates a method to probe the circular dichroism of an illuminated chiral object. In this work, we demonstrate local, subdiffraction limited chiral coupling of light and propagating surface plasmon polaritons in a self-assembled system of a gold nanoantenna and a silver nanowire. A thin silica shell around the nanowire provides precise distance control and also serves as a host for fluorescent molecules, which indicate the direction of plasmon propagation. We characterize our nanoantenna-nanowire systems comprehensively through correlated electron microscopy, energy-dispersive X-ray spectroscopy, dark-field, and fluorescence imaging. Three-dimensional numerical simulations support the experimental findings. Besides our measurement of far-field polarization, we estimate sensing capabilities and derive not only a sensitivity of 1 mdeg for the ellipticity of the light field, but also find 10(3) deg cm(2)/dmol for the circular dichroism of an analyte locally introduced in the hot spot of the antenna-wire system. Thorough modeling of a prototypical design predicts on-chip sensing of chiral analytes. This introduces our system as an ultracompact sensor for chiral response far below the diffraction limit.}, language = {en} } @article{LauLiuMaieretal.2021, author = {Lau, Skadi and Liu, Yue and Maier, Anna and Braune, Steffen and Gossen, Manfred and Neffe, Axel T. and Lendlein, Andreas}, title = {Establishment of an in vitro thrombogenicity test system with cyclic olefin copolymer substrate for endothelial layer formation}, series = {MRS communications / a publication of the Materials Research Society}, volume = {11}, journal = {MRS communications / a publication of the Materials Research Society}, number = {5}, publisher = {Springer}, address = {Berlin}, issn = {2159-6867}, doi = {10.1557/s43579-021-00072-6}, pages = {559 -- 567}, year = {2021}, abstract = {In vitro thrombogenicity test systems require co-cultivation of endothelial cells and platelets under blood flow-like conditions. Here, a commercially available perfusion system is explored using plasma-treated cyclic olefin copolymer (COC) as a substrate for the endothelial cell layer. COC was characterized prior to endothelialization and co-cultivation with platelets under static or flow conditions. COC exhibits a low roughness and a moderate hydrophilicity. Flow promoted endothelial cell growth and prevented platelet adherence. These findings show the suitability of COC as substrate and the importance of blood flow-like conditions for the assessment of the thrombogenic risk of drugs or cardiovascular implant materials.}, language = {en} } @article{TungSunWangetal.2021, author = {Tung, Wing Tai and Sun, Xianlei and Wang, Weiwei and Xu, Xun and Ma, Nan and Lendlein, Andreas}, title = {Structure, mechanical properties and degradation behavior of electrospun PEEU fiber meshes and films}, series = {MRS advances : a journal of the Materials Research Society (MRS)}, volume = {6}, journal = {MRS advances : a journal of the Materials Research Society (MRS)}, number = {10}, publisher = {Springer Nature Switzerland AG}, address = {Cham}, issn = {2059-8521}, doi = {10.1557/s43580-020-00001-0}, pages = {276 -- 282}, year = {2021}, abstract = {The capability of a degradable implant to provide mechanical support depends on its degradation behavior. Hydrolytic degradation was studied for a polyesteretherurethane (PEEU70), which consists of poly(p-dioxanone) (PPDO) and poly(epsilon-caprolactone) (PCL) segments with a weight ratio of 70:30 linked by diurethane junction units. PEEU70 samples prepared in the form of meshes with average fiber diameters of 1.5 mu m (mesh1.5) and 1.2 mu m (mesh1.2), and films were sterilized and incubated in PBS at 37 degrees C with 5 vol\% CO2 supply for 1 to 6 weeks. Degradation features, such as cracks or wrinkles, became apparent from week 4 for all samples. Mass loss was found to be 11 wt\%, 6 wt\%, and 4 wt\% for mesh1.2, mesh1.5, and films at week 6. The elongation at break decreased to under 20\% in two weeks for mesh1.2. In case of the other two samples, this level of degradation was achieved after 4 weeks. The weight average molecular weight of both PEEU70 mesh and film samples decreased to below 30 kg/mol when elongation at break dropped below 20\%. The time period of sustained mechanical stability of PEEU70-based meshes depends on the fiber diameter and molecular weight.}, language = {en} } @article{BanerjiThyssenPampeletal.2021, author = {Banerji, Amitabh and Thyssen, Christoph and Pampel, Barbara and Huwer, Johannes}, title = {Naturwissenschaftsunterricht und Informatik}, series = {Chemie konkret : CHEMKON ; Forum f{\"u}r Unterricht und Didaktik}, volume = {28}, journal = {Chemie konkret : CHEMKON ; Forum f{\"u}r Unterricht und Didaktik}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0944-5846}, doi = {10.1002/ckon.202100008}, pages = {263 -- 265}, year = {2021}, abstract = {Computer literacy plays an increasingly important role in the education of 21st-century society. For chemistry' education. this results in two aspects: On the one hand. informatics education concepts can help to promote chemistry- and science-specific ways of thinking and working. On the other hand, chemistry education can contribute to information education. This paper addresses both aspects and tries to point out the Mutual benefits of informatics education and science education with regards to chemistry lessons.}, language = {de} } @article{ZhaoOpitzEljarratetal.2021, author = {Zhao, Yuhang and Opitz, Andreas and Eljarrat, Alberto and Kochovski, Zdravko and Koch, Christoph and Koch, Norbert and Lu, Yan}, title = {Kinetic study on the adsorption of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane on Ag nanoparticles in chloroform}, series = {ACS applied nano materials}, volume = {4}, journal = {ACS applied nano materials}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {2574-0970}, doi = {10.1021/acsanm.1c02153}, pages = {11625 -- 11635}, year = {2021}, abstract = {In this study, the kinetics of the adsorption of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F(4)TCNQ) on the surface of Ag nanoparticles (Ag NPs) in chloroform has been intensively investigated, as molecular doping is known to play a crucial role in organic electronic devices. Based on the results obtained from UV-visible (vis)-near-infrared (NIR) absorption spectroscopy, cryogenic transmission electron microscopy, scanning nanobeam electron diffraction, and electron energy loss spectroscopy, a two-step interaction kinetics has been proposed for the Ag NPs and F(4)TCNQ molecules, which includes the first step of electron transfer from Ag NPs to F(4)TCNQ indicated by the ionization of F(4)TCNQ and the second step of the formation of a Ag-F(4)TCNQ complex. The whole process has been followed via UV-vis-NIR absorption spectroscopy, which reveals distinct kinetics at two stages: the instantaneous ionization and the long-term complex formation. The kinetics and the influence of the molar ratio of Ag NPs/F(4)TCNQ molecules on the interaction between Ag NPs and F(4)TCNQ molecules in an organic solution are reported herein for the first time. Furthermore, the control experiment with silica-coated Ag NPs manifests that the charge transfer at the surface between Ag NPs and F(4)TCNQ molecules is prohibited by a silica layer of 18 nm.}, language = {en} } @article{ZhouXuMaetal.2021, author = {Zhou, Shuo and Xu, Xun and Ma, Nan and Jung, Friedrich and Lendlein, Andreas}, title = {Influence of sterilization conditions on sulfate-functionalized polyGGE}, series = {Clinical hemorheology and microcirculation : blood flow and vessels}, volume = {79}, journal = {Clinical hemorheology and microcirculation : blood flow and vessels}, number = {4}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1386-0291}, doi = {10.3233/CH-211241}, pages = {597 -- 608}, year = {2021}, abstract = {Sulfated biomolecules are known to influence numerous biological processes in all living organisms. Particularly, they contribute to prevent and inhibit the hypercoagulation condition. The failure of polymeric implants and blood contacting devices is often related to hypercoagulation and microbial contamination. Here, bioactive sulfated biomacromolecules are mimicked by sulfation of poly(glycerol glycidyl ether) (polyGGE) films. Autoclaving, gamma-ray irradiation and ethylene oxide (EtO) gas sterilization techniques were applied to functionalized materials. The sulfate group density and hydrophilicity of sulfated polymers were decreased while chain mobility and thermal degradation were enhanced post autoclaving when compared to those after EtO sterilization. These results suggest that a quality control after sterilization is mandatory to ensure the amount and functionality of functionalized groups are retained.}, language = {en} } @article{BreternitzSchorr2021, author = {Breternitz, Joachim and Schorr, Susan}, title = {Symmetry relations in wurtzite nitrides and oxide nitrides and the curious case of Pmc2(1)}, series = {Acta crystallographica / International Union of Crystallography. Section A, Foundations and advances}, volume = {77}, journal = {Acta crystallographica / International Union of Crystallography. Section A, Foundations and advances}, number = {3}, publisher = {Blackwell}, address = {Oxford [u.a.]}, issn = {2053-2733}, doi = {10.1107/S2053273320015971}, pages = {208 -- 216}, year = {2021}, abstract = {Binary III-V nitrides such as AlN, GaN and InN in the wurtzite-type structure have long been considered as potent semiconducting materials because of their optoelectronic properties, amongst others. With rising concerns over the utilization of scarce elements, a replacement of the trivalent cations by others in ternary and multinary nitrides has led to the development of different variants of nitrides and oxide nitrides crystallizing in lower-symmetry variants of wurtzite. This work presents the symmetry relationships between these structural types specific to nitrides and oxide nitrides and updates some prior work on this matter. The non-existence of compounds crystallizing in Pmc2(1), formally the highest subgroup of the wurtzite type fulfilling Pauling's rules for 1:1:2 stoichiometries, has been puzzling scientists for a while; a rationalization is given, from a crystallographic basis, of why this space group is unlikely to be adopted.}, language = {en} } @article{HaubitzDrobotTsushimaetal.2021, author = {Haubitz, Toni and Drobot, Bj{\"o}rn and Tsushima, Satoru and Steudtner, Robin and Stumpf, Thorsten and Kumke, Michael Uwe}, title = {Quenching mechanism of uranyl(VI) by chloride and bromide in aqueous and non-aqueous solutions}, series = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, volume = {125}, journal = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, number = {20}, publisher = {American Chemical Society}, address = {Washington}, issn = {1089-5639}, doi = {10.1021/acs.jpca.1c02487}, pages = {4380 -- 4389}, year = {2021}, abstract = {A major hindrance in utilizing uranyl(VI) luminescence as a standard analytical tool, for example, in environmental monitoring or nuclear industries, is quenching by other ions such as halide ions, which are present in many relevant matrices of uranyl(VI) speciation. Here, we demonstrate through a combination of time-resolved laser-induced fluorescence spectroscopy, transient absorption spectroscopy, and quantum chemistry that coordinating solvent molecules play a crucial role in U(VI) halide luminescence quenching. We show that our previously suggested quenching mechanism based on an internal redox reaction of the 1:2-uranyl-halide-complex holds also true for bromide-induced quenching of uranyl(VI). By adopting specific organic solvents, we were able to suppress the separation of the oxidized halide ligand X-2(center dot-) and the formed uranyl(V) into fully solvated ions, thereby "reigniting" U(VI) luminescence. Time-dependent density functional theory calculations show that quenching occurs through the outer-sphere complex of U(VI) and halide in water, while the ligand-to-metal charge transfer is strongly reduced in acetonitrile.}, language = {en} } @inproceedings{BreternitzSchorr2021, author = {Breternitz, Joachim and Schorr, Susan}, title = {Halide perovskites}, series = {Acta crystallographica / International Union of Crystallography. Section A, Foundations and advances}, volume = {77}, booktitle = {Acta crystallographica / International Union of Crystallography. Section A, Foundations and advances}, number = {Suppl.}, publisher = {Blackwell}, address = {Oxford [u.a.]}, issn = {2053-2733}, doi = {10.1107/S0108767321089479}, pages = {C750 -- C750}, year = {2021}, language = {en} } @article{GeigerReitenbachHenscheletal.2021, author = {Geiger, Christina and Reitenbach, Julija and Henschel, Cristiane and Kreuzer, Lucas and Widmann, Tobias and Wang, Peixi and Mangiapia, Gaetano and Moulin, Jean-Fran{\c{c}}ois and Papadakis, Christine M. and Laschewsky, Andr{\´e} and M{\"u}ller-Buschbaum, Peter}, title = {Ternary nanoswitches realized with multiresponsive PMMA-b-PNIPMAM films in mixed water/acetone vapor atmospheres}, series = {Advanced engineering materials}, volume = {23}, journal = {Advanced engineering materials}, number = {11}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1438-1656}, doi = {10.1002/adem.202100191}, pages = {12}, year = {2021}, abstract = {To systematically add functionality to nanoscale polymer switches, an understanding of their responsive behavior is crucial. Herein, solvent vapor stimuli are applied to thin films of a diblock copolymer consisting of a short poly(methyl methacrylate) (PMMA) block and a long poly(N-isopropylmethacrylamide) (PNIPMAM) block for realizing ternary nanoswitches. Three significantly distinct film states are successfully implemented by the combination of amphiphilicity and co-nonsolvency effect. The exposure of the thin films to nitrogen, pure water vapor, and mixed water/acetone (90 vol\%/10 vol\%) vapor switches the films from a dried to a hydrated (solvated and swollen) and a water/acetone-exchanged (solvated and contracted) equilibrium state. These three states have distinctly different film thicknesses and solvent contents, which act as switch positions "off," "on," and "standby." For understanding the switching process, time-of-flight neutron reflectometry (ToF-NR) and spectral reflectance (SR) studies of the swelling and dehydration process are complemented by information on the local solvation of functional groups probed with Fourier-transform infrared (FTIR) spectroscopy. An accelerated responsive behavior beyond a minimum hydration/solvation level is attributed to the fast build-up and depletion of the hydration shell of PNIPMAM, caused by its hydrophobic moieties promoting a cooperative hydration character.}, language = {en} }