@article{TranBuiKappeletal.2020, author = {Tran, Quan Hong and Bui, Ngoc Hong and Kappel, Christian and Dau, Nga Thi Ngoc and Nguyen, Loan Thi and Tran, Thuy Thi and Khanh, Tran Dang and Trung, Khuat Huu and Lenhard, Michael and Vi, Son Lang}, title = {Mapping-by-sequencing via MutMap identifies a mutation in ZmCLE7 underlying fasciation in a newly developed EMS mutant population in an elite tropical maize inbred}, series = {Genes}, volume = {11}, journal = {Genes}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2073-4425}, doi = {10.3390/genes11030281}, pages = {1 -- 14}, year = {2020}, abstract = {Induced point mutations are important genetic resources for their ability to create hypo- and hypermorphic alleles that are useful for understanding gene functions and breeding. However, such mutant populations have only been developed for a few temperate maize varieties, mainly B73 and W22, yet no tropical maize inbred lines have been mutagenized and made available to the public to date. We developed a novel Ethyl Methanesulfonate (EMS) induced mutation resource in maize comprising 2050 independent M2 mutant families in the elite tropical maize inbred ML10. By phenotypic screening, we showed that this population is of comparable quality with other mutagenized populations in maize. To illustrate the usefulness of this population for gene discovery, we performed rapid mapping-by-sequencing to clone a fasciated-ear mutant and identify a causal promoter deletion in ZmCLE7 (CLE7). Our mapping procedure does not require crossing to an unrelated parent, thus is suitable for mapping subtle traits and ones affected by heterosis. This first EMS population in tropical maize is expected to be very useful for the maize research community. Also, the EMS mutagenesis and rapid mapping-by-sequencing pipeline described here illustrate the power of performing forward genetics in diverse maize germplasms of choice, which can lead to novel gene discovery due to divergent genetic backgrounds.}, language = {en} } @article{HofreiterHartmann2020, author = {Hofreiter, Michael and Hartmann, Stefanie}, title = {Reconstructing protein-coding sequences from ancient DNA}, series = {Odorant binding and chemosensory proteins}, volume = {642}, journal = {Odorant binding and chemosensory proteins}, publisher = {Academic Press, an imprint of Elsevier}, address = {Cambridge, MA.}, isbn = {978-0-12-821157-1}, issn = {0076-6879}, doi = {10.1016/bs.mie.2020.05.008}, pages = {21 -- 33}, year = {2020}, abstract = {Obtaining information about functional details of proteins of extinct species is of critical importance for a better understanding of the real-life appearance, behavior and ecology of these lost entries in the book of life. In this chapter, we discuss the possibilities to retrieve the necessary DNA sequence information from paleogenomic data obtained from fossil specimens, which can then be used to express and subsequently analyze the protein of interest. We discuss the problems specific to ancient DNA, including mis-coding lesions, short read length and incomplete paleogenome assemblies. Finally, we discuss an alternative, but currently rarely used approach, direct PCR amplification, which is especially useful for comparatively short proteins.}, language = {en} }