@article{PyšekPerglEssletal.2017, author = {Pyšek, Petr and Pergl, Jan and Essl, Franz and Lenzner, Bernd and Dawson, Wayne and Kreft, Holger and Weigelt, Patrick and Winter, Marten and Kartesz, John and Nishino, Misako and Antonova, Liubov A. and Barcelona, Julie F. and Cabezas, Francisco Jos{\´e} and C{\´a}rdenas L{\´o}pez, Dairon and C{\´a}rdenas-Toro, Juliana and Castańo, Nicol{\´a}s and Chac{\´o}n, Eduardo and Chatelain, Cyrille and Dullinger, Stefan and Ebel, Aleksandr L. and Figueiredo, Estrela and Fuentes, Nicol and Genovesi, Piero and Groom, Quentin J. and Henderson, Lesley and Inderjit, and Kupriyanov, Andrey and Masciadri, Silvana and Maurel, No{\"e}lie and Meerman, Jan and Morozova, Olʹga V. and Moser, Dietmar and Nickrent, Daniel and Nowak, Pauline M. and Pagad, Shyama and Patzelt, Annette and Pelser, Pieter B. and Seebens, Hanno and Shu, Wen-sheng and Thomas, Jacob and Velayos, Mauricio and Weber, Ewald and Wieringa, Jan J. and Baptiste, Maria P. and Kleunen, Mark van}, title = {Naturalized alien flora of the world}, series = {Preslia : the journal of the Czech Botanical Society}, volume = {89}, journal = {Preslia : the journal of the Czech Botanical Society}, number = {3}, publisher = {Czech Botanical Soc.}, address = {Praha}, issn = {0032-7786}, doi = {10.23855/preslia.2017.203}, pages = {203 -- 274}, year = {2017}, abstract = {Using the recently built Global Naturalized Alien Flora (GloNAF) database, containing data on the distribution of naturalized alien plants in 483 mainland and 361 island regions of the world, we describe patterns in diversity and geographic distribution of naturalized and invasive plant species, taxonomic, phylogenetic and life-history structure of the global naturalized flora as well as levels of naturalization and their determinants. The mainland regions with the highest numbers of naturalized aliens are some Australian states (with New South Wales being the richest on this continent) and several North American regions (of which California with 1753 naturalized plant species represents the world’s richest region in terms of naturalized alien vascular plants). England, Japan, New Zealand and the Hawaiian archipelago harbour most naturalized plants among islands or island groups. These regions also form the main hotspots of the regional levels of naturalization, measured as the percentage of naturalized aliens in the total flora of the region. Such hotspots of relative naturalized species richness appear on both the western and eastern coasts of North America, in north-western Europe, South Africa, south-eastern Australia, New Zealand, and India. High levels of island invasions by naturalized plants are concentrated in the Pacific, but also occur on individual islands across all oceans. The numbers of naturalized species are closely correlated with those of native species, with a stronger correlation and steeper increase for islands than mainland regions, indicating a greater vulnerability of islands to invasion by species that become successfully naturalized. South Africa, India, California, Cuba, Florida, Queensland and Japan have the highest numbers of invasive species. Regions in temperate and tropical zonobiomes harbour in total 9036 and 6774 naturalized species, respectively, followed by 3280 species naturalized in the Mediterranean zonobiome, 3057 in the subtropical zonobiome and 321 in the Arctic. The New World is richer in naturalized alien plants, with 9905 species compared to 7923 recorded in the Old World. While isolation is the key factor driving the level of naturalization on islands, zonobiomes differing in climatic regimes, and socioeconomy represented by per capita GDP, are central for mainland regions. The 11 most widely distributed species each occur in regions covering about one third of the globe or more in terms of the number of regions where they are naturalized and at least 35\% of the Earth’s land surface in terms of those regions’ areas, with the most widely distributed species Sonchus oleraceus occuring in 48\% of the regions that cover 42\% of the world area. Other widely distributed species are Ricinus communis, Oxalis corniculata, Portulaca oleracea, Eleusine indica, Chenopodium album, Capsella bursa-pastoris, Stellaria media, Bidens pilosa, Datura stramonium and Echinochloa crus-galli. Using the occurrence as invasive rather than only naturalized yields a different ranking, with Lantana camara (120 regions out of 349 for which data on invasive status are known), Calotropis procera (118), Eichhornia crassipes (113), Sonchus oleraceus (108) and Leucaena leucocephala (103) on top. As to the life-history spectra, islands harbour more naturalized woody species (34.4\%) thanmainland regions (29.5\%), and fewer annual herbs (18.7\% compared to 22.3\%). Ranking families by their absolute numbers of naturalized species reveals that Compositae (1343 species), Poaceae (1267) and Leguminosae (1189) contribute most to the global naturalized alien flora. Some families are disproportionally represented by naturalized aliens on islands (Arecaceae, Araceae, Acanthaceae, Amaryllidaceae, Asparagaceae, Convolvulaceae, Rubiaceae, Malvaceae), and much fewer so on mainland (e.g. Brassicaceae, Caryophyllaceae, Boraginaceae). Relating the numbers of naturalized species in a family to its total global richness shows that some of the large species-rich families are over-represented among naturalized aliens (e.g. Poaceae, Leguminosae, Rosaceae, Amaranthaceae, Pinaceae), some under-represented (e.g. Euphorbiaceae, Rubiaceae), whereas the one richest in naturalized species, Compositae, reaches a value expected from its global species richness. Significant phylogenetic signal indicates that families with an increased potential of their species to naturalize are not distributed randomly on the evolutionary tree. Solanum (112 species), Euphorbia (108) and Carex (106) are the genera richest in terms of naturalized species; over-represented on islands are Cotoneaster, Juncus, Eucalyptus, Salix, Hypericum, Geranium and Persicaria, while those relatively richer in naturalized species on the mainland are Atriplex, Opuntia, Oenothera, Artemisia, Vicia, Galium and Rosa. The data presented in this paper also point to where information is lacking and set priorities for future data collection. The GloNAF database has potential for designing concerted action to fill such data gaps, and provide a basis for allocating resources most efficiently towards better understanding and management of plant invasions worldwide.}, language = {en} } @article{ZuppingerDingleySchmidChenetal.2011, author = {Zuppinger-Dingley, D. and Schmid, Bernhard and Chen, Y. and Brandl, H. and van der Heijden, M. G. A. and Joshi, Jasmin Radha}, title = {In their native range, invasive plants are held in check by negative soil-feedbacks}, series = {Ecosphere : the magazine of the International Ecology University}, volume = {2}, journal = {Ecosphere : the magazine of the International Ecology University}, number = {5}, publisher = {Wiley}, address = {Washington}, issn = {2150-8925}, doi = {10.1890/ES11-00061.1}, pages = {12}, year = {2011}, abstract = {The ability of some plant species to dominate communities in new biogeographical ranges has been attributed to an innate higher competitive ability and release from co-evolved specialist enemies. Specifically, invasive success in the new range might be explained by release from biotic negative soil-feedbacks, which control potentially dominant species in their native range. To test this hypothesis, we grew individuals from sixteen phylogenetically paired European grassland species that became either invasive or naturalized in new ranges, in either sterilized soil or in sterilized soil with unsterilized soil inoculum from their native home range. We found that although the native members of invasive species generally performed better than those of naturalized species, these native members of invasive species also responded more negatively to native soil inoculum than did the native members of naturalized species. This supports our hypothesis that potentially invasive species in their native range are held in check by negative soil-feedbacks. However, contrary to expectation, negative soil-feedbacks in potentially invasive species were not much increased by interspecific competition. There was no significant variation among families between invasive and naturalized species regarding their feedback response (negative vs. neutral). Therefore, we conclude that the observed negative soil feedbacks in potentially invasive species may be quite widespread in European families of typical grassland species.}, language = {en} } @article{DrygalaWernerZoller2013, author = {Drygala, Frank and Werner, Ulrike and Zoller, Hinrich}, title = {Diet composition of the invasive raccoon dog (Nyctereutes procyonoides) and the native red fox (Vulpes vulpes) in north-east Germany}, series = {Hystrix : the Italian journal of mammalogy}, volume = {24}, journal = {Hystrix : the Italian journal of mammalogy}, number = {2}, publisher = {Associazione Teriologica Romana}, address = {Roma}, issn = {0394-1914}, doi = {10.4404/hystrix.-24.2-8867}, pages = {190 -- 194}, year = {2013}, abstract = {Invasive alien species pose a great threat to the integrity of natural communities by competition with and predation on native species. In Germany the invasive raccoon dog (Nyctereutes procyonoides) and the native red fox (Vulpes vulpes) occupy a similar ecological niche. Therefore, the aim of our study was to discover the extent of exploitative diet competition between these two generalist carnivores. Carcasses of red foxes (n=256) and raccoon dogs (n=253) were collected throughout Mecklenburg Western-Pomerania (north-east Germany) and stomachs contains were analysed. Frequency of occurrence and biomass share indicate that both canids are omnivorous and pursue opportunistic feeding strategies. Small mammals and edible plant material were the most important food resources for red foxes and raccoon dogs. Nonetheless, interspecies differences were recorded for edible plant material, small mammals and insects. While red foxes mostly feed on voles, raccoon dogs consumed mice and shrews as often as voles. Only raccoon dogs preyed on amphibians. There were no differences in carrion consumption, both species scavenged on wild boar and we found clear competition for carrion year-round. Moreover, there was evidence that two red foxes foraged on raccoon dogs and vice versa. The mean annual interspecies diet overlap index was relatively high. The diets determined for raccoon dogs and red foxes were quite similar and a similar food niche breadth was recorded. However, only minor competition is assumed to take place since differences in feeding habits do exist.}, language = {en} }