@phdthesis{CalderonQuinonez2023, author = {Calder{\´o}n Qui{\~n}{\´o}nez, Ana Patricia}, title = {Ecology and conservation of the jaguar (Panthera onca) in Central America}, doi = {10.25932/publishup-61367}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-613671}, school = {Universit{\"a}t Potsdam}, pages = {140}, year = {2023}, abstract = {Conservation of the jaguar relies on holistic and transdisciplinary conservation strategies that integratively safeguard essential, connected habitats, sustain viable populations and their genetic exchange, and foster peaceful human-jaguar coexistence. These strategies define four research priorities to advance jaguar conservation throughout the species' range. In this thesis I provide several relevant ecological and sociological insights into these research priorities, each addressed in a separate chapter. I focus on the effects of anthropogenic landscapes on jaguar habitat use and population gene flow, spatial patterns of jaguar habitat suitability and functional population connectivity, and on innovative governance approaches which can work synergistically to help achieve human-wildlife conviviality. Furthermore, I translate these insights into recommendations for conservation practice by providing tools and suggestions that conservation managers and stakeholders can use to implement local actions but also make broad scale conservation decisions in Central America. In Chapter 2, I model regional habitat use of jaguars, producing spatially-explicit maps for management of key areas of habitat suitability. Using an occupancy model of 13-year-camera-trap occurrence data, I show that human influence has the strongest impact on jaguar habitat use, and that Jaguar Conservation Units are the most important reservoirs of high quality habitat in this region. I build upon these results by zooming in to an area of high habitat suitability loss in Chapter 3, northern Central America. Here I study the drivers of jaguar gene flow and I produce spatially-explicit maps for management of key areas of functional population connectivity in this region. I use microsatellite data and pseudo-optimized multiscale, multivariate resistance surfaces of gene flow to show that jaguar gene flow is influenced by environmental, and even more strongly, by human influence variables; and that the areas of lowest gene flow resistance largely coincide with the location of the Jaguar Conservation Units. Given that human activities significantly impact jaguar habitat use and gene flow, securing viable jaguar populations in anthropogenic landscapes also requires fostering peaceful human-wildlife coexistence. This is a complex challenge that cannot be met without transdisciplinary academic research and cross-sectoral, collaborative governance structures that effectively respond to the multiple challenges of such coexistence. With this in mind, I focus in Chapter 4 on carnivore conservation initiatives that apply transformative governance approaches to enact transformative change towards human-carnivore coexistence. Using the frameworks of transformative biodiversity governance and convivial conservation, I highlight in this chapter concrete pathways, supported by more inclusive, democratic forms of conservation decision-making and participation that promote truly transformative changes towards human-jaguar conviviality.}, language = {en} } @article{HeimEccardBairlein2018, author = {Heim, Wieland and Eccard, Jana and Bairlein, Franz}, title = {Migration phenology determines niche use of East Asian buntings (Emberizidae) during stopover}, series = {Current zoology}, volume = {64}, journal = {Current zoology}, number = {6}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1674-5507}, doi = {10.1093/cz/zoy016}, pages = {681 -- 692}, year = {2018}, abstract = {Stopover niche utilization of birds during migration has not gained much attention so far, since the majority of the studies focuses on breeding or wintering areas. However, stopover sites are crucial for migratory birds. They are often used by a multitude of species, which could lead to increased competition. In this work, we investigated niche use of 8 migratory and closely related Emberiza bunting species at a stopover site in Far East Russia, situated on the poorly studied East Asian fly-way. We used bird ringing data to evaluate morphological similarity as well as niche overlap on the trophic, spatial, and temporal dimension. Bill morphology was used as a proxy for their trophic niche. We were able to prove that a majority of the species occupies well-defined stopover niches on at least one of the dimensions. Niche breadth and niche overlap differ between spring and autumn season with higher overlap found during spring. Morphological differences are mostly related to overall size and wing pointedness. The temporal dimension is most important for segregation among the studied species. Furthermore, all species seem to exhibit a rather strict and consistent phenological pattern. Their occurrence at the study site is highly correlated with their geographic origin and the length of their migration route. We assume that buntings are able to use available resources opportunistically during stopover, while trying to follow a precise schedule in order to avoid competition and to ensure individual fitness.}, language = {en} } @misc{HeimEccardBairlein2018, author = {Heim, Wieland and Eccard, Jana and Bairlein, Franz}, title = {Migration phenology determines niche use of East Asian buntings (Emberizidae) during stopover}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1038}, issn = {1866-8372}, doi = {10.25932/publishup-47060}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-470607}, pages = {681 -- 692}, year = {2018}, abstract = {Stopover niche utilization of birds during migration has not gained much attention so far, since the majority of the studies focuses on breeding or wintering areas. However, stopover sites are crucial for migratory birds. They are often used by a multitude of species, which could lead to increased competition. In this work, we investigated niche use of 8 migratory and closely related Emberiza bunting species at a stopover site in Far East Russia, situated on the poorly studied East Asian flyway. We used bird ringing data to evaluate morphological similarity as well as niche overlap on the trophic, spatial, and temporal dimension. Bill morphology was used as a proxy for their trophic niche. We were able to prove that a majority of the species occupies well-defined stopover niches on at least one of the dimensions. Niche breadth and niche overlap differ between spring and autumn season with higher overlap found during spring. Morphological differences are mostly related to overall size and wing pointedness. The temporal dimension is most important for segregation among the studied species. Furthermore, all species seem to exhibit a rather strict and consistent phenological pattern. Their occurrence at the study site is highly correlated with their geographic origin and the length of their migration route. We assume that buntings are able to use available resources opportunistically during stopover, while trying to follow a precise schedule in order to avoid competition and to ensure individual fitness.}, language = {en} } @article{FrommholdHeimBarabanovetal.2019, author = {Frommhold, Martin and Heim, Arend and Barabanov, Mikhail and Maier, Franziska and M{\"u}hle, Ralf-Udo and Smirenski, Sergei M. and Heim, Wieland}, title = {Breeding habitat and nest-site selection by an obligatory "nest-cleptoparasite", the Amur Falcon Falco amurensis}, series = {Ecology and evolution}, volume = {9}, journal = {Ecology and evolution}, number = {24}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.5878}, pages = {14430 -- 14441}, year = {2019}, abstract = {The selection of a nest site is crucial for successful reproduction of birds. Animals which re-use or occupy nest sites constructed by other species often have limited choice. Little is known about the criteria of nest-stealing species to choose suitable nesting sites and habitats. Here, we analyze breeding-site selection of an obligatory "nest-cleptoparasite", the Amur Falcon Falco amurensis. We collected data on nest sites at Muraviovka Park in the Russian Far East, where the species breeds exclusively in nests of the Eurasian Magpie Pica pica. We sampled 117 Eurasian Magpie nests, 38 of which were occupied by Amur Falcons. Nest-specific variables were assessed, and a recently developed habitat classification map was used to derive landscape metrics. We found that Amur Falcons chose a wide range of nesting sites, but significantly preferred nests with a domed roof. Breeding pairs of Eurasian Hobby Falco subbuteo and Eurasian Magpie were often found to breed near the nest in about the same distance as neighboring Amur Falcon pairs. Additionally, the occurrence of the species was positively associated with bare soil cover, forest cover, and shrub patches within their home range and negatively with the distance to wetlands. Areas of wetlands and fallow land might be used for foraging since Amur Falcons mostly depend on an insect diet. Additionally, we found that rarely burned habitats were preferred. Overall, the effect of landscape variables on the choice of actual nest sites appeared to be rather small. We used different classification methods to predict the probability of occurrence, of which the Random forest method showed the highest accuracy. The areas determined as suitable habitat showed a high concordance with the actual nest locations. We conclude that Amur Falcons prefer to occupy newly built (domed) nests to ensure high nest quality, as well as nests surrounded by available feeding habitats.}, language = {en} }