@article{PandeyYuOmranianetal.2019, author = {Pandey, Prashant K. and Yu, Jing and Omranian, Nooshin and Alseekh, Saleh and Vaid, Neha and Fernie, Alisdair R. and Nikoloski, Zoran and Laitinen, Roosa A. E.}, title = {Plasticity in metabolism underpins local responses to nitrogen in Arabidopsis thaliana populations}, series = {Plant Direct}, volume = {3}, journal = {Plant Direct}, number = {11}, publisher = {John Wiley \& sonst LTD}, address = {Chichester}, issn = {2475-4455}, doi = {10.1002/pld3.186}, pages = {6}, year = {2019}, abstract = {Nitrogen (N) is central for plant growth, and metabolic plasticity can provide a strategy to respond to changing N availability. We showed that two local A. thaliana populations exhibited differential plasticity in the compounds of photorespiratory and starch degradation pathways in response to three N conditions. Association of metabolite levels with growth-related and fitness traits indicated that controlled plasticity in these pathways could contribute to local adaptation and play a role in plant evolution.}, language = {en} } @article{KuekenGennermannNikoloski2020, author = {K{\"u}ken, Anika and Gennermann, Kristin and Nikoloski, Zoran}, title = {Characterization of maximal enzyme catalytic rates in central metabolism of Arabidopsis thaliana}, series = {The plant journal}, volume = {103}, journal = {The plant journal}, number = {6}, publisher = {Wiley}, address = {Oxford}, issn = {0960-7412}, doi = {10.1111/tpj.14890}, pages = {2168 -- 2177}, year = {2020}, abstract = {Availability of plant-specific enzyme kinetic data is scarce, limiting the predictive power of metabolic models and precluding identification of genetic factors of enzyme properties. Enzyme kinetic data are measuredin vitro, often under non-physiological conditions, and conclusions elicited from modeling warrant caution. Here we estimate maximalin vivocatalytic rates for 168 plant enzymes, including photosystems I and II, cytochrome-b6f complex, ATP-citrate synthase, sucrose-phosphate synthase as well as enzymes from amino acid synthesis with previously undocumented enzyme kinetic data in BRENDA. The estimations are obtained by integrating condition-specific quantitative proteomics data, maximal rates of selected enzymes, growth measurements fromArabidopsis thalianarosette with and fluxes through canonical pathways in a constraint-based model of leaf metabolism. In comparison to findings inEscherichia coli, we demonstrate weaker concordance between the plant-specificin vitroandin vivoenzyme catalytic rates due to a low degree of enzyme saturation. This is supported by the finding that concentrations of nicotinamide adenine dinucleotide (phosphate), adenosine triphosphate and uridine triphosphate, calculated based on our maximalin vivocatalytic rates, and available quantitative metabolomics data are below reportedKMvalues and, therefore, indicate undersaturation of respective enzymes. Our findings show that genome-wide profiling of enzyme kinetic properties is feasible in plants, paving the way for understanding resource allocation.}, language = {en} } @article{ThirumalaikumarGorkaSchulzetal.2020, author = {Thirumalaikumar, Venkatesh P. and Gorka, Michal and Schulz, Karina and Masclaux-Daubresse, Celine and Sampathkumar, Arun and Skirycz, Aleksandra and Vierstra, Richard D. and Balazadeh, Salma}, title = {Selective autophagy regulates heat stress memory in Arabidopsis by NBR1-mediated targeting of HSP90.1 and ROF1}, series = {Autophagy}, volume = {17}, journal = {Autophagy}, number = {9}, publisher = {Taylor \& Francis}, address = {Abingdon}, issn = {1554-8635}, doi = {10.1080/15548627.2020.1820778}, pages = {2184 -- 2199}, year = {2020}, abstract = {In nature, plants are constantly exposed to many transient, but recurring, stresses. Thus, to complete their life cycles, plants require a dynamic balance between capacities to recover following cessation of stress and maintenance of stress memory. Recently, we uncovered a new functional role for macroautophagy/autophagy in regulating recovery from heat stress (HS) and resetting cellular memory of HS inArabidopsis thaliana. Here, we demonstrated that NBR1 (next to BRCA1 gene 1) plays a crucial role as a receptor for selective autophagy during recovery from HS. Immunoblot analysis and confocal microscopy revealed that levels of the NBR1 protein, NBR1-labeled puncta, and NBR1 activity are all higher during the HS recovery phase than before. Co-immunoprecipitation analysis of proteins interacting with NBR1 and comparative proteomic analysis of annbr1-null mutant and wild-type plants identified 58 proteins as potential novel targets of NBR1. Cellular, biochemical and functional genetic studies confirmed that NBR1 interacts with HSP90.1 (heat shock protein 90.1) and ROF1 (rotamase FKBP 1), a member of the FKBP family, and mediates their degradation by autophagy, which represses the response to HS by attenuating the expression ofHSPgenes regulated by the HSFA2 transcription factor. Accordingly, loss-of-function mutation ofNBR1resulted in a stronger HS memory phenotype. Together, our results provide new insights into the mechanistic principles by which autophagy regulates plant response to recurrent HS.}, language = {en} } @phdthesis{Schaarschmidt2021, author = {Schaarschmidt, Stephanie}, title = {Evaluation and application of omics approaches to characterize molecular responses to abiotic stresses in plants}, doi = {10.25932/publishup-50963}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-509630}, school = {Universit{\"a}t Potsdam}, pages = {viii, 117}, year = {2021}, abstract = {Aufgrund des globalen Klimawandels ist die Gew{\"a}hrleistung der Ern{\"a}hrungssicherheit f{\"u}r eine wachsende Weltbev{\"o}lkerung eine große Herausforderung. Insbesondere abiotische Stressoren wirken sich negativ auf Ernteertr{\"a}ge aus. Um klimaangepasste Nutzpflanzen zu entwickeln, ist ein umfassendes Verst{\"a}ndnis molekularer Ver{\"a}nderungen in der Reaktion auf unterschiedlich starke Umweltbelastungen erforderlich. Hochdurchsatz- oder "Omics"-Technologien k{\"o}nnen dazu beitragen, Schl{\"u}sselregulatoren und Wege abiotischer Stressreaktionen zu identifizieren. Zus{\"a}tzlich zur Gewinnung von Omics-Daten m{\"u}ssen auch Programme und statistische Analysen entwickelt und evaluiert werden, um zuverl{\"a}ssige biologische Ergebnisse zu erhalten. Ich habe diese Problemstellung in drei verschiedenen Studien behandelt und daf{\"u}r zwei Omics-Technologien benutzt. In der ersten Studie wurden Transkript-Daten von den beiden polymorphen Arabidopsis thaliana Akzessionen Col-0 und N14 verwendet, um sieben Programme hinsichtlich ihrer F{\"a}higkeit zur Positionierung und Quantifizierung von Illumina RNA Sequenz-Fragmenten („Reads") zu evaluieren. Zwischen 92\% und 99\% der Reads konnten an die Referenzsequenz positioniert werden und die ermittelten Verteilungen waren hoch korreliert f{\"u}r alle Programme. Bei der Durchf{\"u}hrung einer differentiellen Genexpressionsanalyse zwischen Pflanzen, die bei 20 °C oder 4 °C (K{\"a}lteakklimatisierung) exponiert wurden, ergab sich eine große paarweise {\"U}berlappung zwischen den Programmen. In der zweiten Studie habe ich die Transkriptome von zehn verschiedenen Oryza sativa (Reis) Kultivaren sequenziert. Daf{\"u}r wurde die PacBio Isoform Sequenzierungstechnologie benutzt. Die de novo Referenztranskriptome hatten zwischen 38.900 bis 54.500 hoch qualitative Isoformen pro Sorte. Die Isoformen wurden kollabiert, um die Sequenzredundanz zu verringern und danach evaluiert z.B. hinsichtlich des Vollst{\"a}ndigkeitsgrades (BUSCO), der Transkriptl{\"a}nge und der Anzahl einzigartiger Transkripte pro Genloci. F{\"u}r die hitze- und trockenheitstolerante Sorte N22 wurden ca. 650 einzigartige und neue Transkripte identifiziert, von denen 56 signifikant unterschiedlich in sich entwickelnden Samen unter kombiniertem Trocken- und Hitzestress exprimiert wurden. In der letzten Studie habe ich die Ver{\"a}nderungen in Metabolitprofilen von acht Reissorten gemessen und analysiert, die dem Stress hoher Nachttemperaturen (HNT) ausgesetzt waren und w{\"a}hrend der Trocken- und Regenzeit im Feld auf den Philippinen angebaut wurden. Es wurden jahreszeitlich bedingte Ver{\"a}nderungen im Metabolitspiegel sowie f{\"u}r agronomische Parameter identifiziert und m{\"o}gliche Stoffwechselwege, die einen Ertragsr{\"u}ckgang unter HNT-Bedingungen verursachen, vorgeschlagen. Zusammenfassend konnte ich zeigen, dass der Vergleich der RNA-seq Programme den Pflanzenwissenschaftler*innen helfen kann, sich f{\"u}r das richtige Werkzeug f{\"u}r ihre Daten zu entscheiden. Die de novo Transkriptom-Rekonstruktion von Reissorten ohne Genomsequenz bietet einen gezielten, kosteneffizienten Ansatz zur Identifizierung neuer Gene, die durch verschiedene Stressbedingungen reguliert werden unabh{\"a}ngig vom Organismus. Mit dem Metabolomik-Ansatz f{\"u}r HNT-Stress in Reis habe ich stress- und jahreszeitenspezifische Metabolite identifiziert, die in Zukunft als molekulare Marker f{\"u}r die Verbesserung von Nutzpflanzen verwendet werden k{\"o}nnten.}, language = {en} } @article{MeridaFettke2021, author = {Merida, Angel and Fettke, J{\"o}rg}, title = {Starch granule initiation in Arabidopsis thaliana chloroplasts}, series = {The plant journal}, volume = {107}, journal = {The plant journal}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {0960-7412}, doi = {10.1111/tpj.15359}, pages = {688 -- 697}, year = {2021}, abstract = {The initiation of starch granule formation and the mechanism controlling the number of granules per plastid have been some of the most elusive aspects of starch metabolism. This review covers the advances made in the study of these processes. The analyses presented herein depict a scenario in which starch synthase isoform 4 (SS4) provides the elongating activity necessary for the initiation of starch granule formation. However, this protein does not act alone; other polypeptides are required for the initiation of an appropriate number of starch granules per chloroplast. The functions of this group of polypeptides include providing suitable substrates (maltooligosaccharides) to SS4, the localization of the starch initiation machinery to the thylakoid membranes, and facilitating the correct folding of SS4. The number of starch granules per chloroplast is tightly regulated and depends on the developmental stage of the leaves and their metabolic status. Plastidial phosphorylase (PHS1) and other enzymes play an essential role in this process since they are necessary for the synthesis of the substrates used by the initiation machinery. The mechanism of starch granule formation initiation in Arabidopsis seems to be generalizable to other plants and also to the synthesis of long-term storage starch. The latter, however, shows specific features due to the presence of more isoforms, the absence of constantly recurring starch synthesis and degradation, and the metabolic characteristics of the storage sink organs.}, language = {en} } @article{WangLiMaetal.2021, author = {Wang, Meng and Li, Panpan and Ma, Yao and Nie, Xiang and Grebe, Markus and Men, Shuzhen}, title = {Membrane sterol composition in Arabidopsis thaliana affects root elongation via auxin biosynthesis}, series = {International journal of molecular sciences}, volume = {22}, journal = {International journal of molecular sciences}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms22010437}, pages = {20}, year = {2021}, abstract = {Plant membrane sterol composition has been reported to affect growth and gravitropism via polar auxin transport and auxin signaling. However, as to whether sterols influence auxin biosynthesis has received little attention. Here, by using the sterol biosynthesis mutant cyclopropylsterol isomerase1-1 (cpi1-1) and sterol application, we reveal that cycloeucalenol, a CPI1 substrate, and sitosterol, an end-product of sterol biosynthesis, antagonistically affect auxin biosynthesis. The short root phenotype of cpi1-1 was associated with a markedly enhanced auxin response in the root tip. Both were neither suppressed by mutations in polar auxin transport (PAT) proteins nor by treatment with a PAT inhibitor and responded to an auxin signaling inhibitor. However, expression of several auxin biosynthesis genes TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS1 (TAA1) was upregulated in cpi1-1. Functionally, TAA1 mutation reduced the auxin response in cpi1-1 and partially rescued its short root phenotype. In support of this genetic evidence, application of cycloeucalenol upregulated expression of the auxin responsive reporter DR5:GUS (beta-glucuronidase) and of several auxin biosynthesis genes, while sitosterol repressed their expression. Hence, our combined genetic, pharmacological, and sterol application studies reveal a hitherto unexplored sterol-dependent modulation of auxin biosynthesis during Arabidopsis root elongation.}, language = {en} } @article{LiuLiFettke2021, author = {Liu, Qingting and Li, Xiaoping and Fettke, J{\"o}rg}, title = {Starch granules in Arabidopsis thaliana mesophyll and guard cells show similar morphology but differences in size and number}, series = {International journal of molecular sciences}, volume = {22}, journal = {International journal of molecular sciences}, number = {11}, publisher = {Molecular Diversity Preservation International}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms22115666}, pages = {11}, year = {2021}, abstract = {Transitory starch granules result from complex carbon turnover and display specific situations during starch synthesis and degradation. The fundamental mechanisms that specify starch granule characteristics, such as granule size, morphology, and the number per chloroplast, are largely unknown. However, transitory starch is found in the various cells of the leaves of Arabidopsis thaliana, but comparative analyses are lacking. Here, we adopted a fast method of laser confocal scanning microscopy to analyze the starch granules in a series of Arabidopsis mutants with altered starch metabolism. This allowed us to separately analyze the starch particles in the mesophyll and in guard cells. In all mutants, the guard cells were always found to contain more but smaller plastidial starch granules than mesophyll cells. The morphological properties of the starch granules, however, were indiscernible or identical in both types of leaf cells.}, language = {en} } @misc{LiuLiFettke2021, author = {Liu, Qingting and Li, Xiaoping and Fettke, J{\"o}rg}, title = {Starch granules in Arabidopsis thaliana mesophyll and guard cells show similar morphology but differences in size and number}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1143}, issn = {1866-8372}, doi = {10.25932/publishup-51106}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-511067}, pages = {13}, year = {2021}, abstract = {Transitory starch granules result from complex carbon turnover and display specific situations during starch synthesis and degradation. The fundamental mechanisms that specify starch granule characteristics, such as granule size, morphology, and the number per chloroplast, are largely unknown. However, transitory starch is found in the various cells of the leaves of Arabidopsis thaliana, but comparative analyses are lacking. Here, we adopted a fast method of laser confocal scanning microscopy to analyze the starch granules in a series of Arabidopsis mutants with altered starch metabolism. This allowed us to separately analyze the starch particles in the mesophyll and in guard cells. In all mutants, the guard cells were always found to contain more but smaller plastidial starch granules than mesophyll cells. The morphological properties of the starch granules, however, were indiscernible or identical in both types of leaf cells.}, language = {en} } @misc{LiuZhouFettke2021, author = {Liu, Qingting and Zhou, Yuan and Fettke, J{\"o}rg}, title = {Starch granule size and morphology of Arabidopsis thaliana starch-related mutants analyzed during diurnal rhythm and development}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, volume = {26}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, edition = {19}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-55029}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-550291}, pages = {1 -- 9}, year = {2021}, abstract = {Transitory starch plays a central role in the life cycle of plants. Many aspects of this important metabolism remain unknown; however, starch granules provide insight into this persistent metabolic process. Therefore, monitoring alterations in starch granules with high temporal resolution provides one significant avenue to improve understanding. Here, a previously established method that combines LCSM and safranin-O staining for in vivo imaging of transitory starch granules in leaves of Arabidopsis thaliana was employed to demonstrate, for the first time, the alterations in starch granule size and morphology that occur both throughout the day and during leaf aging. Several starch-related mutants were included, which revealed differences among the generated granules. In ptst2 and sex1-8, the starch granules in old leaves were much larger than those in young leaves; however, the typical flattened discoid morphology was maintained. In ss4 and dpe2/phs1/ss4, the morphology of starch granules in young leaves was altered, with a more rounded shape observed. With leaf development, the starch granules became spherical exclusively in dpe2/phs1/ss4. Thus, the presented data provide new insights to contribute to the understanding of starch granule morphogenesis.}, language = {en} } @article{LiuZhouFettke2021, author = {Liu, Qingting and Zhou, Yuan and Fettke, J{\"o}rg}, title = {Starch granule size and morphology of Arabidopsis thaliana starch-related mutants analyzed during diurnal rhythm and development}, series = {Molecules : a journal of synthetic chemistry and natural product chemistry / Molecular Diversity Preservation International}, volume = {26}, journal = {Molecules : a journal of synthetic chemistry and natural product chemistry / Molecular Diversity Preservation International}, edition = {19}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {1420-3049}, doi = {10.3390/molecules26195859}, pages = {1 -- 9}, year = {2021}, abstract = {Transitory starch plays a central role in the life cycle of plants. Many aspects of this important metabolism remain unknown; however, starch granules provide insight into this persistent metabolic process. Therefore, monitoring alterations in starch granules with high temporal resolution provides one significant avenue to improve understanding. Here, a previously established method that combines LCSM and safranin-O staining for in vivo imaging of transitory starch granules in leaves of Arabidopsis thaliana was employed to demonstrate, for the first time, the alterations in starch granule size and morphology that occur both throughout the day and during leaf aging. Several starch-related mutants were included, which revealed differences among the generated granules. In ptst2 and sex1-8, the starch granules in old leaves were much larger than those in young leaves; however, the typical flattened discoid morphology was maintained. In ss4 and dpe2/phs1/ss4, the morphology of starch granules in young leaves was altered, with a more rounded shape observed. With leaf development, the starch granules became spherical exclusively in dpe2/phs1/ss4. Thus, the presented data provide new insights to contribute to the understanding of starch granule morphogenesis.}, language = {en} }