@misc{PaulyHelleMiramontetal.2018, author = {Pauly, Maren and Helle, Gerhard and Miramont, C{\´e}cile and B{\"u}ntgen, Ulf and Treydte, Kerstin and Reinig, Frederick and Guibal, Fr{\´e}d{\´e}ric and Sivan, Olivier and Heinrich, Ingo and Riedel, Frank and Kromer, Bernd and Balanzategui, Daniel and Wacker, Lukas and Sookdeo, Adam Sookdeo and Brauer, Achim}, title = {Subfossil trees suggest enhanced Mediterranean hydroclimate variability at the onset of the Younger Dryas}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1135}, issn = {1866-8372}, doi = {10.25932/publishup-45916}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459169}, pages = {10}, year = {2018}, abstract = {Nearly 13,000 years ago, the warming trend into the Holocene was sharply interrupted by a reversal to near glacial conditions. Climatic causes and ecological consequences of the Younger Dryas (YD) have been extensively studied, however proxy archives from the Mediterranean basin capturing this period are scarce and do not provide annual resolution. Here, we report a hydroclimatic reconstruction from stable isotopes (delta O-18, delta C-13) in subfossil pines from southern France. Growing before and during the transition period into the YD (12 900-12 600 cal BP), the trees provide an annually resolved, continuous sequence of atmospheric change. Isotopic signature of tree sourcewater (delta O-18(sw)) and estimates of relative air humidity were reconstructed as a proxy for variations in air mass origin and precipitation regime. We find a distinct increase in inter-annual variability of sourcewater isotopes (delta O-18(sw)), with three major downturn phases of increasing magnitude beginning at 12 740 cal BP. The observed variation most likely results from an amplified intensity of North Atlantic (low delta O-18(sw)) versus Mediterranean (high delta O-18(sw)) precipitation. This marked pattern of climate variability is not seen in records from higher latitudes and is likely a consequence of atmospheric circulation oscillations at the margin of the southward moving polar front.}, language = {en} } @misc{HornickBachCrawfurdetal.2017, author = {Hornick, Thomas and Bach, Lennart T. and Crawfurd, Katharine J. and Spilling, Kristian and Achterberg, Eric Pieter and Woodhouse, Jason Nicholas and Schulz, Kai Georg and Brussaard, Corina P. D. and Riebesell, Ulf and Grossart, Hans-Peter}, title = {Ocean acidification impacts bacteria-phytoplankton coupling at low-nutrient conditions}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {667}, issn = {1866-8372}, doi = {10.25932/publishup-41712}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-417126}, pages = {15}, year = {2017}, abstract = {The oceans absorb about a quarter of the annually produced anthropogenic atmospheric carbon dioxide (CO2), resulting in a decrease in surface water pH, a process termed ocean acidification (OA). Surprisingly little is known about how OA affects the physiology of heterotrophic bacteria or the coupling of heterotrophic bacteria to phytoplankton when nutrients are limited. Previous experiments were, for the most part, undertaken during productive phases or following nutrient additions designed to stimulate algal blooms. Therefore, we performed an in situ large-volume mesocosm (similar to 55 m(3)) experiment in the Baltic Sea by simulating different fugacities of CO2 (fCO(2)) extending from present to future conditions. The study was conducted in July-August after the nominal spring bloom, in order to maintain low-nutrient conditions throughout the experiment. This resulted in phytoplankton communities dominated by small-sized functional groups (picophytoplankton). There was no consistent fCO(2)-induced effect on bacterial protein production (BPP), cell-specific BPP (csBPP) or biovolumes (BVs) of either free-living (FL) or particle-associated (PA) heterotrophic bacteria, when considered as individual components (univariate analyses). Permutational Multivariate Analysis of Variance (PERMANOVA) revealed a significant effect of the fCO(2) treatment on entire assemblages of dissolved and particulate nutrients, metabolic parameters and the bacteria-phytoplankton community. However, distance-based linear modelling only identified fCO(2) as a factor explaining the variability observed amongst the microbial community composition, but not for explaining variability within the metabolic parameters. This suggests that fCO(2) impacts on microbial metabolic parameters occurred indirectly through varying physicochemical parameters and microbial species composition. Cluster analyses examining the co-occurrence of different functional groups of bacteria and phytoplankton further revealed a separation of the four fCO(2)-treated mesocosms from both control mesocosms, indicating that complex trophic interactions might be altered in a future acidified ocean. Possible consequences for nutrient cycling and carbon export are still largely unknown, in particular in a nutrient-limited ocean.}, language = {en} } @misc{MurawskiBuergerVorogushynetal.2016, author = {Murawski, Aline and B{\"u}rger, Gerd and Vorogushyn, Sergiy and Merz, Bruno}, title = {Can local climate variability be explained by weather patterns?}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {525}, issn = {1866-8372}, doi = {10.25932/publishup-41015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-410155}, pages = {24}, year = {2016}, abstract = {To understand past flood changes in the Rhine catchment and in particular the role of anthropogenic climate change in extreme flows, an attribution study relying on a proper GCM (general circulation model) downscaling is needed. A downscaling based on conditioning a stochastic weather generator on weather patterns is a promising approach. This approach assumes a strong link between weather patterns and local climate, and sufficient GCM skill in reproducing weather pattern climatology. These presuppositions are unprecedentedly evaluated here using 111 years of daily climate data from 490 stations in the Rhine basin and comprehensively testing the number of classification parameters and GCM weather pattern characteristics. A classification based on a combination of mean sea level pressure, temperature, and humidity from the ERA20C reanalysis of atmospheric fields over central Europe with 40 weather types was found to be the most appropriate for stratifying six local climate variables. The corresponding skill is quite diverse though, ranging from good for radiation to poor for precipitation. Especially for the latter it was apparent that pressure fields alone cannot sufficiently stratify local variability. To test the skill of the latest generation of GCMs from the CMIP5 ensemble in reproducing the frequency, seasonality, and persistence of the derived weather patterns, output from 15 GCMs is evaluated. Most GCMs are able to capture these characteristics well, but some models showed consistent deviations in all three evaluation criteria and should be excluded from further attribution analysis.}, language = {en} } @misc{SchleussnerLissnerFischeretal.2016, author = {Schleussner, Carl-Friedrich and Lissner, Tabea Katharina and Fischer, Erich M. and Wohland, Jan and Perrette, Mah{\´e} and Golly, Antonius and Rogelj, Joeri and Childers, Katelin and Schewe, Jacob and Frieler, Katja and Mengel, Matthias and Hare, William and Schaeffer, Michiel}, title = {Differential climate impacts for policy-relevant limits to global warming}, series = {Earth System Dynamics}, journal = {Earth System Dynamics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-410258}, pages = {25}, year = {2016}, abstract = {Robust appraisals of climate impacts at different levels of global-mean temperature increase are vital to guide assessments of dangerous anthropogenic interference with the climate system. The 2015 Paris Agreement includes a two-headed temperature goal: "holding the increase in the global average temperature to well below 2 degrees C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5 degrees C". Despite the prominence of these two temperature limits, a comprehensive overview of the differences in climate impacts at these levels is still missing. Here we provide an assessment of key impacts of climate change at warming levels of 1.5 degrees C and 2 degrees C, including extreme weather events, water availability, agricultural yields, sea-level rise and risk of coral reef loss. Our results reveal substantial differences in impacts between a 1.5 degrees C and 2 degrees C warming that are highly relevant for the assessment of dangerous anthropogenic interference with the climate system. For heat-related extremes, the additional 0.5 degrees C increase in global-mean temperature marks the difference between events at the upper limit of present-day natural variability and a new climate regime, particularly in tropical regions. Similarly, this warming difference is likely to be decisive for the future of tropical coral reefs. In a scenario with an end-of-century warming of 2 degrees C, virtually all tropical coral reefs are projected to be at risk of severe degradation due to temperature-induced bleaching from 2050 onwards. This fraction is reduced to about 90\% in 2050 and projected to decline to 70\% by 2100 for a 1.5 degrees C scenario. Analyses of precipitation-related impacts reveal distinct regional differences and hot-spots of change emerge. Regional reduction in median water availability for the Mediterranean is found to nearly double from 9\% to 17\% between 1.5 degrees C and 2 degrees C, and the projected lengthening of regional dry spells increases from 7 to 11\%. Projections for agricultural yields differ between crop types as well as world regions. While some (in particular high-latitude) regions may benefit, tropical regions like West Africa, South-East Asia, as well as Central and northern South America are projected to face substantial local yield reductions, particularly for wheat and maize. Best estimate sea-level rise projections based on two illustrative scenarios indicate a 50cm rise by 2100 relative to year 2000-levels for a 2 degrees C scenario, and about 10 cm lower levels for a 1.5 degrees C scenario. In a 1.5 degrees C scenario, the rate of sea-level rise in 2100 would be reduced by about 30\% compared to a 2 degrees C scenario. Our findings highlight the importance of regional differentiation to assess both future climate risks and different vulnerabilities to incremental increases in global-mean temperature. The article provides a consistent and comprehensive assessment of existing projections and a good basis for future work on refining our understanding of the difference between impacts at 1.5 degrees C and 2 degrees C warming.}, language = {en} }