@phdthesis{Kneis2007, author = {Kneis, David}, title = {A water quality model for shallow river-lake systems and its application in river basin management}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-14647}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {This work documents the development and application of a new model for simulating mass transport and turnover in rivers and shallow lakes. The simulation tool called 'TRAM' is intended to complement mesoscale eco-hydrological catchment models in studies on river basin management. TRAM aims at describing the water quality of individual water bodies, using problem- and scale-adequate approaches for representing their hydrological and ecological characteristics. The need for such flexible water quality analysis and prediction tools is expected to further increase during the implementation of the European Water Framework Directive (WFD) as well as in the context of climate change research. The developed simulation tool consists of a transport and a reaction module with the latter being highly flexible with respect to the description of turnover processes in the aquatic environment. Therefore, simulation approaches of different complexity can easily be tested and model formulations can be chosen in consideration of the problem at hand, knowledge of process functioning, and data availability. Consequently, TRAM is suitable for both heavily simplified engineering applications as well as scientific ecosystem studies involving a large number of state variables, interactions, and boundary conditions. TRAM can easily be linked to catchment models off-line and it requires the use of external hydrodynamic simulation software. Parametrization of the model and visualization of simulation results are facilitated by the use of geographical information systems as well as specific pre- and post-processors. TRAM has been developed within the research project 'Management Options for the Havel River Basin' funded by the German Ministry of Education and Research. The project focused on the analysis of different options for reducing the nutrient load of surface waters. It was intended to support the implementation of the WFD in the lowland catchment of the Havel River located in North-East Germany. Within the above-mentioned study TRAM was applied with two goals in mind. In a first step, the model was used for identifying the magnitude as well as spatial and temporal patterns of nitrogen retention and sediment phosphorus release in a 100~km stretch of the highly eutrophic Lower Havel River. From the system analysis, strongly simplified conceptual approaches for modeling N-retention and P-remobilization in the studied river-lake system were obtained. In a second step, the impact of reduced external nutrient loading on the nitrogen and phosphorus concentrations of the Havel River was simulated (scenario analysis) taking into account internal retention/release. The boundary conditions for the scenario analysis such as runoff and nutrient emissions from river basins were computed by project partners using the catchment models SWIM and ArcEGMO-Urban. Based on the output of TRAM, the considered options of emission control could finally be evaluated using a site-specific assessment scale which is compatible with the requirements of the WFD. Uncertainties in the model predictions were also examined. According to simulation results, the target of the WFD -- with respect to total phosphorus concentrations in the Lower Havel River -- could be achieved in the medium-term, if the full potential for reducing point and non-point emissions was tapped. Furthermore, model results suggest that internal phosphorus loading will ease off noticeably until 2015 due to a declining pool of sedimentary mobile phosphate. Mass balance calculations revealed that the lakes of the Lower Havel River are an important nitrogen sink. This natural retention effect contributes significantly to the efforts aimed at reducing the river's nitrogen load. If a sustainable improvement of the river system's water quality is to be achieved, enhanced measures to further reduce the immissions of both phosphorus and nitrogen are required.}, language = {en} } @misc{MooijTrolleJeppesenetal.2010, author = {Mooij, Wolf M. and Trolle, Dennis and Jeppesen, Erik and Arhonditsis, George B. and Belolipetsky, Pavel V. and Chitamwebwa, Deonatus B. R. and Degermendzhy, Andrey G. and DeAngelis, Donald L. and Domis, Lisette Nicole de Senerpont and Downing, Andrea S. and Elliott, J. Alex and Fragoso Jr., Carlos Ruberto and Gaedke, Ursula and Genova, Svetlana N. and Gulati, Ramesh D. and H{\aa}kanson, Lars and Hamilton, David P. and Hipsey, Matthew R. and 't Hoen, Jochem and H{\"u}lsmann, Stephan and Los, F. Hans and Makler-Pick, Vardit and Petzoldt, Thomas and Prokopkin, Igor G. and Rinke, Karsten and Schep, Sebastiaan A. and Tominaga, Koji and Van Dam, Anne A. and Van Nes, Egbert H. and Wells, Scott A. and Janse, Jan H.}, title = {Challenges and opportunities for integrating lake ecosystem modelling approaches}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1326}, issn = {1866-8372}, doi = {10.25932/publishup-42983}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-429839}, pages = {35}, year = {2010}, abstract = {A large number and wide variety of lake ecosystem models have been developed and published during the past four decades. We identify two challenges for making further progress in this field. One such challenge is to avoid developing more models largely following the concept of others ('reinventing the wheel'). The other challenge is to avoid focusing on only one type of model, while ignoring new and diverse approaches that have become available ('having tunnel vision'). In this paper, we aim at improving the awareness of existing models and knowledge of concurrent approaches in lake ecosystem modelling, without covering all possible model tools and avenues. First, we present a broad variety of modelling approaches. To illustrate these approaches, we give brief descriptions of rather arbitrarily selected sets of specific models. We deal with static models (steady state and regression models), complex dynamic models (CAEDYM, CE-QUAL-W2, Delft 3D-ECO, LakeMab, LakeWeb, MyLake, PCLake, PROTECH, SALMO), structurally dynamic models and minimal dynamic models. We also discuss a group of approaches that could all be classified as individual based: super-individual models (Piscator, Charisma), physiologically structured models, stage-structured models and traitbased models. We briefly mention genetic algorithms, neural networks, Kalman filters and fuzzy logic. Thereafter, we zoom in, as an in-depth example, on the multi-decadal development and application of the lake ecosystem model PCLake and related models (PCLake Metamodel, Lake Shira Model, IPH-TRIM3D-PCLake). In the discussion, we argue that while the historical development of each approach and model is understandable given its 'leading principle', there are many opportunities for combining approaches. We take the point of view that a single 'right' approach does not exist and should not be strived for. Instead, multiple modelling approaches, applied concurrently to a given problem, can help develop an integrative view on the functioning of lake ecosystems. We end with a set of specific recommendations that may be of help in the further development of lake ecosystem models.}, language = {en} } @phdthesis{Hesse2018, author = {Hesse, Cornelia}, title = {Integrated water quality modelling in meso- to large-scale catchments of the Elbe river basin under climate and land use change}, doi = {10.25932/publishup-42295}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-422957}, school = {Universit{\"a}t Potsdam}, pages = {ix, 217}, year = {2018}, abstract = {In einer sich {\"a}ndernden Umwelt sind Fließgew{\"a}sser{\"o}kosysteme vielf{\"a}ltigen direkten und indirekten anthropogenen Belastungen ausgesetzt, die die Gew{\"a}sser sowohl in ihrer Menge als auch in ihrer G{\"u}te beeintr{\"a}chtigen k{\"o}nnen. Ein {\"u}berm{\"a}ßiger Eintrag von N{\"a}hrstoffen verursacht etwa Massenentwicklungen von Algen und Sauerstoffdefizite in den Gew{\"a}ssern, was zum Verfehlen der Ziele der Wasserrahmenrichtlinie (WRRL) f{\"u}hren kann. In vielen europ{\"a}ischen Einzugsgebieten und auch dem der Elbe sind solche Probleme zu beobachten. W{\"a}hrend der letzten Jahrzehnte entstanden diverse computergest{\"u}tzte Modelle, die zum Schutz und Management von Wasserressourcen genutzt werden k{\"o}nnen. Sie helfen beim Verstehen der N{\"a}hrstoffprozesse und Belastungspfade in Einzugsgebieten, bei der Absch{\"a}tzung m{\"o}glicher Folgen von Klima- und Landnutzungs{\"a}nderungen f{\"u}r die Wasserk{\"o}rper, sowie bei der Entwicklung eventueller Kompensationsmaßnahmen. Aufgrund der Vielzahl an sich gegenseitig beeinflussenden Prozessen ist die Modellierung der Wasserqualit{\"a}t komplexer und aufw{\"a}ndiger als eine reine hydrologische Modellierung. {\"O}kohydrologische Modelle zur Simulation der Gew{\"a}sserg{\"u}te, einschließlich des Modells SWIM (Soil and Water Integrated Model), bed{\"u}rfen auch h{\"a}ufig noch einer Weiterentwicklung und Verbesserung der Prozessbeschreibungen. Aus diesen {\"U}berlegungen entstand die vorliegende Dissertation, die sich zwei Hauptanliegen widmet: 1) einer Weiterentwicklung des N{\"a}hrstoffmoduls des {\"o}kohydrologischen Modells SWIM f{\"u}r Stickstoff- und Phosphorprozesse, und 2) der Anwendung des Modells SWIM im Elbegebiet zur Unterst{\"u}tzung eines anpassungsf{\"a}higen Wassermanagements im Hinblick auf m{\"o}gliche zuk{\"u}nftige {\"A}nderungen der Umweltbedingungen. Die kumulative Dissertation basiert auf f{\"u}nf wissenschaftlichen Artikeln, die in internationalen Zeitschriften ver{\"o}ffentlicht wurden. Im Zuge der Arbeit wurden verschiedene Modellanpassungen in SWIM vorgenommen, wie etwa ein einfacher Ansatz zur Verbesserung der Simulation der Wasser- und N{\"a}hrstoffverh{\"a}ltnisse in Feuchtgebieten, ein um Ammonium erweiterter Stickstoffkreislauf im Boden, sowie ein Flussprozessmodul, das Umwandlungsprozesse, Sauerstoffverh{\"a}ltnisse und Algenwachstum im Fließgew{\"a}sser simuliert, haupts{\"a}chlich angetrieben von Temperatur und Licht. Auch wenn dieser neue Modellansatz ein sehr komplexes Modell mit einer Vielzahl an neuen Kalibrierungsparametern und steigender Unsicherheit erzeugte, konnten gute Ergebnisse in den Teileinzugsgebieten und dem gesamten Gebiet der Elbe erzielt werden, so dass das Modell zur Absch{\"a}tzung m{\"o}glicher Folgen von Klimavariabilit{\"a}ten und ver{\"a}nderten anthropogenen Einfl{\"u}ssen f{\"u}r die Gew{\"a}sserg{\"u}te genutzt werden konnte. Das neue Fließgew{\"a}ssermodul ist ein wichtiger Beitrag zur Verbesserung der N{\"a}hrstoffmodellierung in SWIM, vor allem f{\"u}r Stoffe, die haupts{\"a}chlich aus Punktquellen in die Gew{\"a}sser gelangen (wie z.B. Phosphat). Der neue Modellansatz verbessert zudem die Anwendbarkeit von SWIM f{\"u}r Fragestellungen im Zusammenhang mit der WRRL, bei der biologische Qualit{\"a}tskomponenten (wie etwa Phytoplankton) eine zentrale Rolle spielen. Die dargestellten Ergebnisse der Wirkungsstudien k{\"o}nnen bei Entscheidungstr{\"a}gern und anderen Akteuren das Verst{\"a}ndnis f{\"u}r zuk{\"u}nftige Herausforderungen im Gew{\"a}ssermanagement erh{\"o}hen und dazu beitragen, ein angepasstes Management f{\"u}r das Elbeeinzugsgebiet zu entwickeln.}, language = {en} } @misc{ErlerRiebeBeitzetal.2019, author = {Erler, Alexander and Riebe, Daniel and Beitz, Toralf and L{\"o}hmannsr{\"o}ben, Hans-Gerd and Gebbers, Robin}, title = {Soil Nutrient Detection for Precision Agriculture Using Handheld Laser-Induced Breakdown Spectroscopy (LIBS) and Multivariate Regression Methods (PLSR, Lasso and GPR)}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {815}, issn = {1866-8372}, doi = {10.25932/publishup-44418}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-444183}, pages = {19}, year = {2019}, abstract = {Precision agriculture (PA) strongly relies on spatially differentiated sensor information. Handheld instruments based on laser-induced breakdown spectroscopy (LIBS) are a promising sensor technique for the in-field determination of various soil parameters. In this work, the potential of handheld LIBS for the determination of the total mass fractions of the major nutrients Ca, K, Mg, N, P and the trace nutrients Mn, Fe was evaluated. Additionally, other soil parameters, such as humus content, soil pH value and plant available P content, were determined. Since the quantification of nutrients by LIBS depends strongly on the soil matrix, various multivariate regression methods were used for calibration and prediction. These include partial least squares regression (PLSR), least absolute shrinkage and selection operator regression (Lasso), and Gaussian process regression (GPR). The best prediction results were obtained for Ca, K, Mg and Fe. The coefficients of determination obtained for other nutrients were smaller. This is due to much lower concentrations in the case of Mn, while the low number of lines and very weak intensities are the reason for the deviation of N and P. Soil parameters that are not directly related to one element, such as pH, could also be predicted. Lasso and GPR yielded slightly better results than PLSR. Additionally, several methods of data pretreatment were investigated.}, language = {en} } @misc{KaercherFilstrupBraunsetal.2020, author = {K{\"a}rcher, Oskar and Filstrup, Christopher T. and Brauns, Mario and Tasevska, Orhideja and Patceva, Suzana and Hellwig, Niels and Walz, Ariane and Frank, Karin and Markovic, Danijela}, title = {Chlorophyll a relationships with nutrients and temperature, and predictions for lakes across perialpine and Balkan mountain regions}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-51527}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-515271}, pages = {15}, year = {2020}, abstract = {Model-derived relationships between chlorophyll a (Chl-a) and nutrients and temperature have fundamental implications for understanding complex interactions among water quality measures used for lake classification, yet accuracy comparisons of different approaches are scarce. Here, we (1) compared Chl-a model performances across linear and nonlinear statistical approaches; (2) evaluated single and combined effects of nutrients, depth, and temperature as lake surface water temperature (LSWT) or altitude on Chl-a; and (3) investigated the reliability of the best water quality model across 13 lakes from perialpine and central Balkan mountain regions. Chl-a was modelled using in situ water quality data from 157 European lakes; elevation data and LSWT in situ data were complemented by remote sensing measurements. Nonlinear approaches performed better, implying complex relationships between Chl-a and the explanatory variables. Boosted regression trees, as the best performing approach, accommodated interactions among predictor variables. Chl-a-nutrient relationships were characterized by sigmoidal curves, with total phosphorus having the largest explanatory power for our study region. In comparison with LSWT, utilization of altitude, the often-used temperature surrogate, led to different influence directions but similar predictive performances. These results support utilizing altitude in models for Chl-a predictions. Compared to Chl-a observations, Chl-a predictions of the best performing approach for mountain lakes (oligotrophic-eutrophic) led to minor differences in trophic state categorizations. Our findings suggest that both models with LSWT and altitude are appropriate for water quality predictions of lakes in mountain regions and emphasize the importance of incorporating interactions among variables when facing lake management challenges.}, language = {en} }