@phdthesis{Semmo2016, author = {Semmo, Amir}, title = {Design and implementation of non-photorealistic rendering techniques for 3D geospatial data}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-99525}, school = {Universit{\"a}t Potsdam}, pages = {XVI, 155}, year = {2016}, abstract = {Geospatial data has become a natural part of a growing number of information systems and services in the economy, society, and people's personal lives. In particular, virtual 3D city and landscape models constitute valuable information sources within a wide variety of applications such as urban planning, navigation, tourist information, and disaster management. Today, these models are often visualized in detail to provide realistic imagery. However, a photorealistic rendering does not automatically lead to high image quality, with respect to an effective information transfer, which requires important or prioritized information to be interactively highlighted in a context-dependent manner. Approaches in non-photorealistic renderings particularly consider a user's task and camera perspective when attempting optimal expression, recognition, and communication of important or prioritized information. However, the design and implementation of non-photorealistic rendering techniques for 3D geospatial data pose a number of challenges, especially when inherently complex geometry, appearance, and thematic data must be processed interactively. Hence, a promising technical foundation is established by the programmable and parallel computing architecture of graphics processing units. This thesis proposes non-photorealistic rendering techniques that enable both the computation and selection of the abstraction level of 3D geospatial model contents according to user interaction and dynamically changing thematic information. To achieve this goal, the techniques integrate with hardware-accelerated rendering pipelines using shader technologies of graphics processing units for real-time image synthesis. The techniques employ principles of artistic rendering, cartographic generalization, and 3D semiotics—unlike photorealistic rendering—to synthesize illustrative renditions of geospatial feature type entities such as water surfaces, buildings, and infrastructure networks. In addition, this thesis contributes a generic system that enables to integrate different graphic styles—photorealistic and non-photorealistic—and provide their seamless transition according to user tasks, camera view, and image resolution. Evaluations of the proposed techniques have demonstrated their significance to the field of geospatial information visualization including topics such as spatial perception, cognition, and mapping. In addition, the applications in illustrative and focus+context visualization have reflected their potential impact on optimizing the information transfer regarding factors such as cognitive load, integration of non-realistic information, visualization of uncertainty, and visualization on small displays.}, language = {en} } @phdthesis{Richter2018, author = {Richter, Rico}, title = {Concepts and techniques for processing and rendering of massive 3D point clouds}, doi = {10.25932/publishup-42330}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-423304}, school = {Universit{\"a}t Potsdam}, pages = {v, 131}, year = {2018}, abstract = {Remote sensing technology, such as airborne, mobile, or terrestrial laser scanning, and photogrammetric techniques, are fundamental approaches for efficient, automatic creation of digital representations of spatial environments. For example, they allow us to generate 3D point clouds of landscapes, cities, infrastructure networks, and sites. As essential and universal category of geodata, 3D point clouds are used and processed by a growing number of applications, services, and systems such as in the domains of urban planning, landscape architecture, environmental monitoring, disaster management, virtual geographic environments as well as for spatial analysis and simulation. While the acquisition processes for 3D point clouds become more and more reliable and widely-used, applications and systems are faced with more and more 3D point cloud data. In addition, 3D point clouds, by their very nature, are raw data, i.e., they do not contain any structural or semantics information. Many processing strategies common to GIS such as deriving polygon-based 3D models generally do not scale for billions of points. GIS typically reduce data density and precision of 3D point clouds to cope with the sheer amount of data, but that results in a significant loss of valuable information at the same time. This thesis proposes concepts and techniques designed to efficiently store and process massive 3D point clouds. To this end, object-class segmentation approaches are presented to attribute semantics to 3D point clouds, used, for example, to identify building, vegetation, and ground structures and, thus, to enable processing, analyzing, and visualizing 3D point clouds in a more effective and efficient way. Similarly, change detection and updating strategies for 3D point clouds are introduced that allow for reducing storage requirements and incrementally updating 3D point cloud databases. In addition, this thesis presents out-of-core, real-time rendering techniques used to interactively explore 3D point clouds and related analysis results. All techniques have been implemented based on specialized spatial data structures, out-of-core algorithms, and GPU-based processing schemas to cope with massive 3D point clouds having billions of points. All proposed techniques have been evaluated and demonstrated their applicability to the field of geospatial applications and systems, in particular for tasks such as classification, processing, and visualization. Case studies for 3D point clouds of entire cities with up to 80 billion points show that the presented approaches open up new ways to manage and apply large-scale, dense, and time-variant 3D point clouds as required by a rapidly growing number of applications and systems.}, language = {en} }