@article{MickelssonPaycha2010, author = {Mickelsson, Jouko and Paycha, Sylvie}, title = {The logarithmic residue density of a generalized Laplacian}, series = {Journal of the Australian Mathematical Society}, volume = {90}, journal = {Journal of the Australian Mathematical Society}, number = {1}, publisher = {Cambridge Univ. Press}, address = {Cambridge}, issn = {0263-6115}, doi = {10.1017/S144678871100108X}, pages = {53 -- 80}, year = {2010}, abstract = {We show that the residue density of the logarithm of a generalized Laplacian on a closed manifold definesan invariant polynomial-valued differential form. We express it in terms of a finite sum of residues ofclassical pseudodifferential symbols. In the case of the square of a Dirac operator, these formulas providea pedestrian proof of the Atiyah-Singer formula for a pure Dirac operator in four dimensions and for atwisted Dirac operator on a flat space of any dimension. These correspond to special cases of a moregeneral formula by Scott and Zagier. In our approach, which is of perturbative nature, we use either aCampbell-Hausdorff formula derived by Okikiolu or a noncommutative Taylor-type formula.}, language = {en} } @misc{MickelssonPaycha2011, author = {Mickelsson, Jouko and Paycha, Sylvie}, title = {The logarithmic residue density of a generalized Laplacian}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {649}, issn = {1866-8372}, doi = {10.25932/publishup-41368}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-413680}, pages = {28}, year = {2011}, abstract = {We show that the residue density of the logarithm of a generalized Laplacian on a closed manifold defines an invariant polynomial-valued differential form. We express it in terms of a finite sum of residues of classical pseudodifferential symbols. In the case of the square of a Dirac operator, these formulas provide a pedestrian proof of the Atiyah-Singer formula for a pure Dirac operator in four dimensions and for a twisted Dirac operator on a flat space of any dimension. These correspond to special cases of a more general formula by Scott and Zagier. In our approach, which is of perturbative nature, we use either a Campbell-Hausdorff formula derived by Okikiolu or a noncommutative Taylor-type formula.}, language = {en} } @unpublished{SchulzeTarkhanov1998, author = {Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {Euler solutions of pseudodifferential equations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-25211}, year = {1998}, abstract = {We consider a homogeneous pseudodifferential equation on a cylinder C = IR x X over a smooth compact closed manifold X whose symbol extends to a meromorphic function on the complex plane with values in the algebra of pseudodifferential operators over X. When assuming the symbol to be independent on the variable t element IR, we show an explicit formula for solutions of the equation. Namely, to each non-bijectivity point of the symbol in the complex plane there corresponds a finite-dimensional space of solutions, every solution being the residue of a meromorphic form manufactured from the inverse symbol. In particular, for differential equations we recover Euler's theorem on the exponential solutions. Our setting is model for the analysis on manifolds with conical points since C can be thought of as a 'stretched' manifold with conical points at t = -infinite and t = infinite.}, language = {en} }