@article{Scherbaum1997, author = {Scherbaum, Frank}, title = {Zero Phase FIR filters in digital seismic acquisition systems : blessing or curse}, year = {1997}, language = {en} } @article{ZaliOhrnbergerScherbaumetal.2021, author = {Zali, Zahra and Ohrnberger, Matthias and Scherbaum, Frank and Cotton, Fabrice and Eibl, Eva P. S.}, title = {Volcanic tremor extraction and earthquake detection using music information retrieval algorithms}, series = {Seismological research letters}, volume = {92}, journal = {Seismological research letters}, number = {6}, publisher = {Seismological Society of America}, address = {Boulder, Colo.}, issn = {0895-0695}, doi = {10.1785/0220210016}, pages = {3668 -- 3681}, year = {2021}, abstract = {Volcanic tremor signals are usually observed before or during volcanic eruptions and must be monitored to evaluate the volcanic activity. A challenge in studying seismic signals of volcanic origin is the coexistence of transient signal swarms and long-lasting volcanic tremor signals. Separating transient events from volcanic tremors can, therefore, contrib-ute to improving upon our understanding of the underlying physical processes. Exploiting the idea of harmonic-percussive separation in musical signal processing, we develop a method to extract the harmonic volcanic tremor signals and to detect tran-sient events from seismic recordings. Based on the similarity properties of spectrogram frames in the time-frequency domain, we decompose the signal into two separate spec-trograms representing repeating (harmonic) and nonrepeating (transient) patterns, which correspond to volcanic tremor signals and earthquake signals, respectively. We reconstruct the harmonic tremor signal in the time domain from the complex spectrogram of the repeating pattern by only considering the phase components for the frequency range in which the tremor amplitude spectrum is significantly contribut-ing to the energy of the signal. The reconstructed signal is, therefore, clean tremor signal without transient events. Furthermore, we derive a characteristic function suitable for the detection of tran-sient events (e.g., earthquakes) by integrating amplitudes of the nonrepeating spectro-gram over frequency at each time frame. Considering transient events like earthquakes, 78\% of the events are detected for signal-to-noise ratio = 0.1 in our semisynthetic tests. In addition, we compared the number of detected earthquakes using our method for one month of continuous data recorded during the Holuhraun 2014-2015 eruption in Iceland with the bulletin presented in Agustsdottir et al. (2019). Our single station event detection algorithm identified 84\% of the bulletin events. Moreover, we detected a total of 12,619 events, which is more than twice the number of the bulletin events.}, language = {en} } @article{KoehlerOhrnbergerScherbaum2009, author = {Koehler, Andreas and Ohrnberger, Matthias and Scherbaum, Frank}, title = {Unsupervised feature selection and general pattern discovery using Self-Organizing Maps for gaining insights into the nature of seismic wavefields}, issn = {0098-3004}, doi = {10.1016/j.cageo.2009.02.004}, year = {2009}, abstract = {This study presents an unsupervised feature selection and learning approach for the discovery and intuitive imaging of significant temporal patterns in seismic single-station or network recordings. For this purpose, the data are parametrized by real-valued feature vectors for short time windows using standard analysis tools for seismic data, such as frequency-wavenumber, polarization, and spectral analysis. We use Self-Organizing Maps (SOMs) for a data-driven feature selection, visualization and clustering procedure, which is in particular suitable for high-dimensional data sets. Our feature selection method is based on significance testing using the Wald-Wolfowitz runs test for-individual features and on correlation hunting with SOMs in feature subsets. Using synthetics composed of Rayleigh and Love waves and real-world data, we show the robustness and the improved discriminative power of that approach compared to feature subsets manually selected from individual wavefield parametrization methods. Furthermore, the capability of the clustering and visualization techniques to investigate the discrimination of wave phases is shown by means of synthetic waveforms and regional earthquake recordings.}, language = {en} } @article{DelavaudCottonAkkaretal.2012, author = {Delavaud, Elise and Cotton, Fabrice Pierre and Akkar, Sinan and Scherbaum, Frank and Danciu, Laurentiu and Beauval, Celine and Drouet, Stephane and Douglas, John and Basili, Roberto and Sandikkaya, M. Abdullah and Segou, Margaret and Faccioli, Ezio and Theodoulidis, Nikos}, title = {Toward a ground-motion logic tree for probabilistic seismic hazard assessment in Europe}, series = {Journal of seismology}, volume = {16}, journal = {Journal of seismology}, number = {3}, publisher = {Springer}, address = {Dordrecht}, issn = {1383-4649}, doi = {10.1007/s10950-012-9281-z}, pages = {451 -- 473}, year = {2012}, abstract = {The Seismic Hazard Harmonization in Europe (SHARE) project, which began in June 2009, aims at establishing new standards for probabilistic seismic hazard assessment in the Euro-Mediterranean region. In this context, a logic tree for ground-motion prediction in Europe has been constructed. Ground-motion prediction equations (GMPEs) and weights have been determined so that the logic tree captures epistemic uncertainty in ground-motion prediction for six different tectonic regimes in Europe. Here we present the strategy that we adopted to build such a logic tree. This strategy has the particularity of combining two complementary and independent approaches: expert judgment and data testing. A set of six experts was asked to weight pre-selected GMPEs while the ability of these GMPEs to predict available data was evaluated with the method of Scherbaum et al. (Bull Seismol Soc Am 99:3234-3247, 2009). Results of both approaches were taken into account to commonly select the smallest set of GMPEs to capture the uncertainty in ground-motion prediction in Europe. For stable continental regions, two models, both from eastern North America, have been selected for shields, and three GMPEs from active shallow crustal regions have been added for continental crust. For subduction zones, four models, all non-European, have been chosen. Finally, for active shallow crustal regions, we selected four models, each of them from a different host region but only two of them were kept for long periods. In most cases, a common agreement has been also reached for the weights. In case of divergence, a sensitivity analysis of the weights on the seismic hazard has been conducted, showing that once the GMPEs have been selected, the associated set of weights has a smaller influence on the hazard.}, language = {en} } @article{AlAtikAbrahamsonBommeretal.2010, author = {Al Atik, Linda and Abrahamson, Norman A. and Bommer, Julian J. and Scherbaum, Frank and Cotton, Fabrice Pierre and Kuehn, Nicolas}, title = {The variability of ground-motion prediction models and its components}, issn = {0895-0695}, doi = {10.1785/gssrl.81.5.794}, year = {2010}, language = {en} } @article{BeauvalHainzlScherbaum2006, author = {Beauval, Celine and Hainzl, Sebastian and Scherbaum, Frank}, title = {The impact of the spatial uniform distribution of seismicity on probabilistic seismic-hazard estimation}, series = {Bulletin of the Seismological Society of America}, volume = {96}, journal = {Bulletin of the Seismological Society of America}, number = {6}, publisher = {GeoScienceWorld}, address = {Alexandria, Va.}, issn = {0037-1106}, doi = {10.1785/0120060073}, pages = {2465 -- 2471}, year = {2006}, abstract = {The first step in the estimation of probabilistic seismic hazard in a region commonly consists of the definition and characterization of the relevant seismic sources. Because in low-seismicity regions seismicity is often rather diffuse and faults are difficult to identify, large areal source zones are mostly used. The corresponding hypothesis is that seismicity is uniformly distributed inside each areal seismic source zone. In this study, the impact of this hypothesis on the probabilistic hazard estimation is quantified through the generation of synthetic spatial seismicity distributions. Fractal seismicity distributions are generated inside a given source zone and probabilistic hazard is computed for a set of sites located inside this zone. In our study, the impact of the spatial seismicity distribution is defined as the deviation from the hazard value obtained for a spatially uniform seismicity distribution. From the generation of a large number of synthetic distributions, the correlation between the fractal dimension D and the impact is derived. The results show that the assumption of spatially uniform seismicity tends to bias the hazard to higher values. The correlation can be used to determine the systematic biases and uncertainties for hazard estimations in real cases, where the fractal dimension has been determined. We apply the technique in Germany (Cologne area) and in France (Alps).}, language = {en} } @article{RietbrockScherbaum1998, author = {Rietbrock, Andreas and Scherbaum, Frank}, title = {The GIANT analysis system (Graphical Interaktive Aftershock Network Toolbox)}, year = {1998}, language = {en} } @article{ScherbaumCottonStaedtke2006, author = {Scherbaum, Frank and Cotton, Fabrice Pierre and Staedtke, Helmut}, title = {The estimation of minimum-misfit stochastic models from empirical ground-motion prediction equations}, doi = {10.1785/0120050015}, year = {2006}, abstract = {In areas of moderate to low seismic activity there is commonly a lack of recorded strong ground motion. As a consequence, the prediction of ground motion expected for hypothetical future earthquakes is often performed by employing empirical models from other regions. In this context, Campbell's hybrid empirical approach (Campbell, 2003, 2004) provides a methodological framework to adapt ground-motion prediction equations to arbitrary target regions by using response spectral host-to-target-region-conversion filters. For this purpose, the empirical ground-motion prediction equation has to be quantified in terms of a stochastic model. The problem we address here is how to do this in a systematic way and how to assess the corresponding uncertainties. For the determination of the model parameters we use a genetic algorithm search. The stochastic model spectra were calculated by using a speed-optimized version of SMSIM (Boore, 2000). For most of the empirical ground-motion models, we obtain sets of stochastic models that match the empirical models within the full magnitude and distance ranges of their generating data sets fairly well. The overall quality of fit and the resulting model parameter sets strongly depend on the particular choice of the distance metric used for the stochastic model. We suggest the use of the hypocentral distance metric for the stochastic Simulation of strong ground motion because it provides the lowest-misfit stochastic models for most empirical equations. This is in agreement with the results of two recent studies of hypocenter locations in finite-source models which indicate that hypocenters are often located close to regions of large slip (Mai et al., 2005; Manighetti et al., 2005). Because essentially all empirical ground-motion prediction equations contain data from different geographical regions, the model parameters corresponding to the lowest-misfit stochastic models cannot necessarily be expected to represent single, physically realizable host regions but to model the generating data sets in an average way. In addition, the differences between the lowest-misfit stochastic models and the empirical ground-motion prediction equation are strongly distance, magnitude, and frequency dependent, which, according to the laws of uncertainty propagation, will increase the variance of the corresponding hybrid empirical model predictions (Scherbaum et al., 2005). As a consequence, the selection of empirical ground-motion models for host-to-target-region conversions requires considerable judgment of the ground-motion analyst}, language = {en} } @article{ScherbaumWeberBorm2000, author = {Scherbaum, Frank and Weber, Michael H. and Borm, G.}, title = {The deep seismological lab in the KTB borehole: Status 1999}, year = {2000}, language = {en} } @article{WeberAbuAyyashAbueladasetal.2004, author = {Weber, Michael H. and Abu-Ayyash, Khalil and Abueladas, Abdel-Rahman and Agnon, Amotz and Al-Amoush, H. and Babeyko, Andrey and Bartov, Yosef and Baumann, M. and Ben-Avraham, Zvi and Bock, G{\"u}nter and Bribach, Jens and El-Kelani, R. and Forster, A. and F{\"o}rster, Hans-J{\"u}rgen and Frieslander, U. and Garfunkel, Zvi and Grunewald, Steffen and Gotze, Hans-J{\"u}rgen and Haak, Volker and Haberland, Christian and Hassouneh, Mohammed and Helwig, S. and Hofstetter, Alfons and Jackel, K. H. and Kesten, Dagmar and Kind, Rainer and Maercklin, Nils and Mechie, James and Mohsen, Amjad and Neubauer, F. M. and Oberh{\"a}nsli, Roland and Qabbani, I. and Ritter, O. and Rumpker, G. and Rybakov, M. and Ryberg, Trond and Scherbaum, Frank and Schmidt, J. and Schulze, A. and Sobolev, Stephan Vladimir and Stiller, M. and Th,}, title = {The crustal structure of the Dead Sea Transform}, year = {2004}, abstract = {To address one of the central questions of plate tectonics-How do large transform systems work and what are their typical features?-seismic investigations across the Dead Sea Transform (DST), the boundary between the African and Arabian plates in the Middle East, were conducted for the first time. A major component of these investigations was a combined reflection/ refraction survey across the territories of Palestine, Israel and Jordan. The main results of this study are: (1) The seismic basement is offset by 3-5 km under the DST, (2) The DST cuts through the entire crust, broadening in the lower crust, (3) Strong lower crustal reflectors are imaged only on one side of the DST, (4) The seismic velocity sections show a steady increase in the depth of the crust-mantle transition (Moho) from 26 km at the Mediterranean to 39 km under the Jordan highlands, with only a small but visible, asymmetric topography of the Moho under the DST. These observations can be linked to the left-lateral movement of 105 km of the two plates in the last 17 Myr, accompanied by strong deformation within a narrow zone cutting through the entire crust. Comparing the DST and the San Andreas Fault (SAF) system, a strong asymmetry in subhorizontal lower crustal reflectors and a deep reaching deformation zone both occur around the DST and the SAF. The fact that such lower crustal reflectors and deep deformation zones are observed in such different transform systems suggests that these structures are possibly fundamental features of large transform plate boundaries}, language = {en} }