@phdthesis{Korzeniowska2017, author = {Korzeniowska, Karolina}, title = {Object-based image analysis for detecting landforms diagnostic of natural hazards}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-402240}, school = {Universit{\"a}t Potsdam}, pages = {XV, 139}, year = {2017}, abstract = {Natural and potentially hazardous events occur on the Earth's surface every day. The most destructive of these processes must be monitored, because they may cause loss of lives, infrastructure, and natural resources, or have a negative effect on the environment. A variety of remote sensing technologies allow the recoding of data to detect these processes in the first place, partly based on the diagnostic landforms that they form. To perform this effectively, automatic methods are desirable. Universal detection of natural hazards is challenging due to their differences in spatial impacts, timing and longevity of consequences, and the spatial resolution of remote-sensing data. Previous studies have reported that topographic metrics such as roughness, which can be captured from digital elevation data, can reveal landforms diagnostic of natural hazards, such as gullies, dunes, lava fields, landslides and snow avalanches, as these landforms tend to be more heterogeneous than the surrounding landscape. A single roughness metric is often limited in such detections; however, a more complex approach that exploits the spatial relation and the location of objects, such as object-based image analysis (OBIA), is desirable. In this thesis, I propose a topographic roughness measure derived from an airborne laser scanning (ALS) digital terrain model (DTM) and discuss its performance in detecting landforms principally diagnostic of natural hazards. I further develop OBIA-based algorithms for the detection of snow avalanches using near-infrared (NIR) aerial images, and the size (changes) of mountain lakes using LANDSAT satellite images. I quantitatively test and document how the level of difficulty in detecting these very challenging landforms depends on the input data resolution, the derivatives that could be evaluated from images and DTMs, the size, shape and complexity of landforms, and the capabilities of obtaining the information in the data. I demonstrate that surface roughness is a promising metric for detecting different landforms in diverse environments, and that OBIA assists significantly in detecting parts of lakes and snow avalanches that may not be correctly assigned by applying only the thresholding of spectral properties of data and their derivatives. The curvature-based surface roughness parameter allows the detection of gullies, dunes, lava fields and landslides with a user's accuracy of 0.63, 0.21, 0.53, and 0.45, respectively. The OBIA algorithms for detecting lakes and snow avalanches obtained user's accuracy of 0.98, and 0.78, respectively. Most of the analysed landforms constituted only a small part of the entire dataset, and therefore the user's accuracy is the most appropriate performance measure that should be given in a such classification, because it tells how many automatically-extracted pixels in fact represent the object that one wants to classify, and its calculation does not take the second (background) class into account. One advantage of the proposed roughness parameter is that it allows the extraction of the heterogeneity of the surface without the need for data detrending. The OBIA approach is novel in that it allows the classification of lakes regardless of the physical state of their water, and also allows the separation of frozen lakes from glaciers that have very similar water indices used in purely optical remote sensing applications. The algorithm proposed for snow avalanches allows the detection of release zones, tracks, and deposition zones by verifying the snow heterogeneity based on a roughness metric evaluated from a water index, and by analysing the local relation of segments with their neighbouring objects. This algorithm contains few steps, which allows for the simultaneous classification of avalanches that occur on diverse mountain slopes and differ in size and shape. This thesis contributes to natural hazard research as it provides automatic solutions to tracking six different landforms that are diagnostic of natural hazards over large regions. This is a step toward delineating areas susceptible to the processes producing these landforms and the improvement of hazard maps.}, language = {en} } @phdthesis{Tyrallova2013, author = {Tyrallov{\´a}, Lucia}, title = {Automatisierte Objektidentifikation und Visualisierung terrestrischer Oberfl{\"a}chenformen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-69268}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Die automatisierte Objektidentifikation stellt ein modernes Werkzeug in den Geoinformationswissenschaften dar (BLASCHKE et al., 2012). Um bei thematischen Kartierungen untereinander vergleichbare Ergebnisse zu erzielen, sollen aus Sicht der Geoinformatik Mittel f{\"u}r die Objektidentifikation eingesetzt werden. Anstelle von Feldarbeit werden deshalb in der vorliegenden Arbeit multispektrale Fernerkundungsdaten als Prim{\"a}rdaten verwendet. Konkrete nat{\"u}rliche Objekte werden GIS-gest{\"u}tzt und automatisiert {\"u}ber große Fl{\"a}chen und Objektdichten aus Prim{\"a}rdaten identifiziert und charakterisiert. Im Rahmen der vorliegenden Arbeit wird eine automatisierte Prozesskette zur Objektidentifikation konzipiert. Es werden neue Ans{\"a}tze und Konzepte der objektbasierten Identifikation von nat{\"u}rlichen isolierten terrestrischen Oberfl{\"a}chenformen entwickelt und implementiert. Die Prozesskette basiert auf einem Konzept, das auf einem generischen Ansatz f{\"u}r automatisierte Objektidentifikation aufgebaut ist. Die Prozesskette kann anhand charakteristischer quantitativer Parameter angepasst und so umgesetzt werden, womit das Konzept der Objektidentifikation modular und skalierbar wird. Die modulbasierte Architektur erm{\"o}glicht den Einsatz sowohl einzelner Module als auch ihrer Kombination und m{\"o}glicher Erweiterungen. Die eingesetzte Methodik der Objektidentifikation und die daran anschließende Charakteristik der (geo)morphometrischen und morphologischen Parameter wird durch statistische Verfahren gest{\"u}tzt. Diese erm{\"o}glichen die Vergleichbarkeit von Objektparametern aus unterschiedlichen Stichproben. Mit Hilfe der Regressionsund Varianzanalyse werden Verh{\"a}ltnisse zwischen Objektparametern untersucht. Es werden funktionale Abh{\"a}ngigkeiten der Parameter analysiert, um die Objekte qualitativ zu beschreiben. Damit ist es m{\"o}glich, automatisiert berechnete Maße und Indizes der Objekte als quantitative Daten und Informationen zu erfassen und unterschiedliche Stichproben anzuwenden. Im Rahmen dieser Arbeit bilden Thermokarstseen die Grundlage f{\"u}r die Entwicklungen und als Beispiel sowie Datengrundlage f{\"u}r den Aufbau des Algorithmus und die Analyse. Die Geovisualisierung der multivariaten nat{\"u}rlichen Objekte wird f{\"u}r die Entwicklung eines besseren Verst{\"a}ndnisses der r{\"a}umlichen Relationen der Objekte eingesetzt. Kern der Geovisualisierung ist das Verkn{\"u}pfen von Visualisierungsmethoden mit karten{\"a}hnlichen Darstellungen.}, language = {de} } @phdthesis{Nass2013, author = {Naß, Andrea}, title = {Konzeption und Implementierung eines GIS-basierten Kartierungssystems f{\"u}r die geowissenschaftliche Planetenforschung}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-65298}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Die Kartierung planetarer K{\"o}rper stellt ein wesentliches Mittel der raumfahrtgest{\"u}tzten Exploration der Himmelsk{\"o}rper dar. Aktuell kommen zur Erstellung der planetaren Karten Geo-Informationssysteme (GIS) zum Einsatz. Ziel dieser Arbeit ist es, eine GIS-orientierte Prozesskette (Planetary Mapping System (PMS)) zu konzipieren, mit dem Schwerpunkt geologische und geomorphologische Karten planetarer Oberfl{\"a}chen einheitlich durchf{\"u}hren zu k{\"o}nnen und nachhaltig zug{\"a}nglich zu machen.}, language = {de} } @phdthesis{Morgenstern2012, author = {Morgenstern, Anne}, title = {Thermokarst and thermal erosion : degradation of Siberian ice-rich permafrost}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-62079}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Current climate warming is affecting arctic regions at a faster rate than the rest of the world. This has profound effects on permafrost that underlies most of the arctic land area. Permafrost thawing can lead to the liberation of considerable amounts of greenhouse gases as well as to significant changes in the geomorphology, hydrology, and ecology of the corresponding landscapes, which may in turn act as a positive feedback to the climate system. Vast areas of the east Siberian lowlands, which are underlain by permafrost of the Yedoma-type Ice Complex, are particularly sensitive to climate warming because of the high ice content of these permafrost deposits. Thermokarst and thermal erosion are two major types of permafrost degradation in periglacial landscapes. The associated landforms are prominent indicators of climate-induced environmental variations on the regional scale. Thermokarst lakes and basins (alasses) as well as thermo-erosional valleys are widely distributed in the coastal lowlands adjacent to the Laptev Sea. This thesis investigates the spatial distribution and morphometric properties of these degradational features to reconstruct their evolutionary conditions during the Holocene and to deduce information on the potential impact of future permafrost degradation under the projected climate warming. The methodological approach is a combination of remote sensing, geoinformation, and field investigations, which integrates analyses on local to regional spatial scales. Thermokarst and thermal erosion have affected the study region to a great extent. In the Ice Complex area of the Lena River Delta, thermokarst basins cover a much larger area than do present thermokarst lakes on Yedoma uplands (20.0 and 2.2 \%, respectively), which indicates that the conditions for large-area thermokarst development were more suitable in the past. This is supported by the reconstruction of the development of an individual alas in the Lena River Delta, which reveals a prolonged phase of high thermokarst activity since the Pleistocene/Holocene transition that created a large and deep basin. After the drainage of the primary thermokarst lake during the mid-Holocene, permafrost aggradation and degradation have occurred in parallel and in shorter alternating stages within the alas, resulting in a complex thermokarst landscape. Though more dynamic than during the first phase, late Holocene thermokarst activity in the alas was not capable of degrading large portions of Pleistocene Ice Complex deposits and substantially altering the Yedoma relief. Further thermokarst development in existing alasses is restricted to thin layers of Holocene ice-rich alas sediments, because the Ice Complex deposits underneath the large primary thermokarst lakes have thawed completely and the underlying deposits are ice-poor fluvial sands. Thermokarst processes on undisturbed Yedoma uplands have the highest impact on the alteration of Ice Complex deposits, but will be limited to smaller areal extents in the future because of the reduced availability of large undisturbed upland surfaces with poor drainage. On Kurungnakh Island in the central Lena River Delta, the area of Yedoma uplands available for future thermokarst development amounts to only 33.7 \%. The increasing proximity of newly developing thermokarst lakes on Yedoma uplands to existing degradational features and other topographic lows decreases the possibility for thermokarst lakes to reach large sizes before drainage occurs. Drainage of thermokarst lakes due to thermal erosion is common in the study region, but thermo-erosional valleys also provide water to thermokarst lakes and alasses. Besides these direct hydrological interactions between thermokarst and thermal erosion on the local scale, an interdependence between both processes exists on the regional scale. A regional analysis of extensive networks of thermo-erosional valleys in three lowland regions of the Laptev Sea with a total study area of 5,800 km² found that these features are more common in areas with higher slopes and relief gradients, whereas thermokarst development is more pronounced in flat lowlands with lower relief gradients. The combined results of this thesis highlight the need for comprehensive analyses of both, thermokarst and thermal erosion, in order to assess past and future impacts and feedbacks of the degradation of ice-rich permafrost on hydrology and climate of a certain region.}, language = {en} } @phdthesis{Wolff2010, author = {Wolff, Markus}, title = {Geovisual methods and techniques for the development of three-dimensional tactical intelligence assessments}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-50446}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {This thesis presents methods, techniques and tools for developing three-dimensional representations of tactical intelligence assessments. Techniques from GIScience are combined with crime mapping methods. The range of methods applied in this study provides spatio-temporal GIS analysis as well as 3D geovisualisation and GIS programming. The work presents methods to enhance digital three-dimensional city models with application specific thematic information. This information facilitates further geovisual analysis, for instance, estimations of urban risks exposure. Specific methods and workflows are developed to facilitate the integration of spatio-temporal crime scene analysis results into 3D tactical intelligence assessments. Analysis comprises hotspot identification with kernel-density-estimation techniques (KDE), LISA-based verification of KDE hotspots as well as geospatial hotspot area characterisation and repeat victimisation analysis. To visualise the findings of such extensive geospatial analysis, three-dimensional geovirtual environments are created. Workflows are developed to integrate analysis results into these environments and to combine them with additional geospatial data. The resulting 3D visualisations allow for an efficient communication of complex findings of geospatial crime scene analysis.}, language = {en} } @phdthesis{Schmallowsky2009, author = {Schmallowsky, Antje}, title = {Visualisierung dynamischer Raumph{\"a}nomene in Geoinformationssystemen}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-41262}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {Die visuelle Kommunikation ist eine effiziente Methode, um dynamische Ph{\"a}nomene zu beschreiben. Informationsobjekte pr{\"a}zise wahrzunehmen, einen schnellen Zugriff auf strukturierte und relevante Informationen zu erm{\"o}glichen, erfordert konsistente und nach dem formalen Minimalprinzip konzipierte Analyse- und Darstellungsmethoden. Dynamische Raumph{\"a}nomene in Geoinformationssystemen k{\"o}nnen durch den Mangel an konzeptionellen Optimierungsanpassungen aufgrund ihrer statischen Systemstruktur nur bedingt die Informationen von Raum und Zeit modellieren. Die Forschung in dieser Arbeit ist daher auf drei interdisziplin{\"a}re Ans{\"a}tze fokussiert. Der erste Ansatz stellt eine echtzeitnahe Datenerfassung dar, die in Geodatenbanken zeitorientiert verwaltet wird. Der zweite Ansatz betrachtet Analyse- und Simulationsmethoden, die das dynamische Verhalten analysieren und prognostizieren. Der dritte Ansatz konzipiert Visualisierungsmethoden, die insbesondere dynamische Prozesse abbilden. Die Symbolisierung der Prozesse passt sich bedarfsweise in Abh{\"a}ngigkeit des Prozessverlaufes und der Interaktion zwischen Datenbanken und Simulationsmodellen den verschiedenen Entwicklungsphasen an. Dynamische Aspekte k{\"o}nnen so mit Hilfe bew{\"a}hrter Funktionen aus der GI-Science zeitnah mit modularen Werkzeugen entwickelt und visualisiert werden. Die Analyse-, Verschneidungs- und Datenverwaltungsfunktionen sollen hierbei als Nutzungs- und Auswertungspotential alternativ zu Methoden statischer Karten dienen. Bedeutend f{\"u}r die zeitliche Komponente ist das Verkn{\"u}pfen neuer Technologien, z. B. die Simulation und Animation, basierend auf einer strukturierten Zeitdatenbank in Verbindung mit statistischen Verfahren. Methodisch werden Modellans{\"a}tze und Visualisierungstechniken entwickelt, die auf den Bereich Verkehr transferiert werden. Verkehrsdynamische Ph{\"a}nomene, die nicht zusammenh{\"a}ngend und umfassend darstellbar sind, werden modular in einer serviceorientierten Architektur separiert, um sie in verschiedenen Ebenen r{\"a}umlich und zeitlich visuell zu pr{\"a}sentieren. Entwicklungen der Vergangenheit und Prognosen der Zukunft werden {\"u}ber verschiedene Berechnungsmethoden modelliert und visuell analysiert. Die Verkn{\"u}pfung einer Mikrosimulation (Abbildung einzelner Fahrzeuge) mit einer netzgesteuerten Makrosimulation (Abbildung eines gesamten Straßennetzes) erm{\"o}glicht eine maßstabsunabh{\"a}ngige Simulation und Visualisierung des Mobilit{\"a}tsverhaltens ohne zeitaufwendige Bewertungsmodellberechnungen. Zuk{\"u}nftig wird die visuelle Analyse raum-zeitlicher Ver{\"a}nderungen f{\"u}r planerische Entscheidungen ein effizientes Mittel sein, um Informationen {\"u}bergreifend verf{\"u}gbar, klar strukturiert und zweckorientiert zur Verf{\"u}gung zu stellen. Der Mehrwert durch visuelle Geoanalysen, die modular in einem System integriert sind, ist das flexible Auswerten von Messdaten nach zeitlichen und r{\"a}umlichen Merkmalen.}, language = {de} } @phdthesis{Saiger2007, author = {Saiger, Peter Paul}, title = {Entwicklung, Implementierung und Erprobung eines planetaren Informationssystems auf Basis von ArcGIS}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-15877}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {Mit der Entwicklung der modernen Raumfahrt Mitte der 60er-Jahre des zwanzigsten Jahrhunderts und der Eroberung des Weltraums brach eine neue Epoche der bis dato auf Beobachtungen mit dem Teleskop gest{\"u}tzten planetaren Forschung an. W{\"a}hrend des Wettrennens um die technologische F{\"u}hrerschaft im All zur Zeit des Kalten Krieges war das erste Ziel die Entsendung von Satelliten zur Erdbeobachtung, denen aber schon bald Sonden zum Mond und den benachbarten Planeten folgten. Diese Missionen lieferten eine enorme F{\"u}lle von Informationen in Form von Bildern und Messergebnissen in unterschiedlichen Datenformaten. Diese galt und gilt es zu strukturieren, zu verwalten, zu aktualisieren und zu interpretieren. F{\"u}r die Interpretation terrestrischer Daten werden geographische Informationssysteme (GIS) hinzugezogen, die jedoch f{\"u}r planetare Anwendungen aufgrund unterschiedlicher Voraussetzungen nicht ohne weiteres eingesetzt werden k{\"o}nnen. Daher wurde im Rahmen dieser Arbeit die f{\"u}r die Verwaltung von geographischen Daten der Erdfernerkundung kommerziell erh{\"a}ltliche Software ArcGIS Desktop 9.0 / 9.1 (ESRI) mit eigenen Programmen und Modulen f{\"u}r die Planetenforschung angepasst. Diese erm{\"o}glichen die Aufbereitung und den Import planetarer Bild- und Textinformation in die kommerzielle Software. Zus{\"a}tzlich wurde eine planetare Datenbank zur Speicherung und zentralen Verwaltung der Informationen aufgebaut. Die im Rahmen dieser Arbeit entwickelten Softwarekomponenten erm{\"o}glichen die schnelle und benutzerfreundliche Aufbereitung der in der Datenbank gehaltenen Informationen und das Auslesen in Dateiformate, die f{\"u}r geographische Informationssysteme geeignet sind. Des Weiteren wurde eine „Werkzeugleiste" f{\"u}r ArcGIS entwickelt, die das Arbeiten mit planetaren Datens{\"a}tzen betr{\"a}chtlich beschleunigt und vereinfacht. Sie beinhaltet auch Module zur wissenschaftlichen Interpretation der planetaren Informationen, wie beispielsweise der Berechnung der Oberfl{\"a}chenrauigkeit der Marsoberfl{\"a}che inklusive der fl{\"a}chendeckenden Kalibrierung der Eingangs-Basisdaten. Exemplarisch konnte gezeigt werden, dass das Verfahren eine verbesserte Berechnung der Oberfl{\"a}chenrauigkeit erm{\"o}glicht, als bisher angewandte Ans{\"a}tze. Zudem wurde eine auf ArcGIS basierende Prozesskette zur Berechnung von hierarchischen Flussnetzen entwickelt und erprobt. Das terrestrische Beispiel, die Analyse eines Abflusssystems auf Island, zeigte eine sehr große {\"U}bereinstimmung der errechneten Gew{\"a}ssernetze mit den morphologischen Gegebenheiten vor Ort. Daraus ließ sich eine hohe Genauigkeit der mit demselben Ansatz errechneten Gew{\"a}ssernetze auf dem Mars ableiten. Auf der Grundlage der in dieser Arbeit entwickelten Programme und Module lassen sich auch Daten zuk{\"u}nftiger Missionen aufbereiten und in ein solches System einbinden, um diese mit eigenen Ans{\"a}tzen zu verwalten, zu aktualisieren und f{\"u}r neue wissenschaftliche Fragestellungen perfekt anzupassen, einzusetzen und zu pr{\"a}sentieren, um so neue wissenschaftliche Erkenntnisse in der Planetenforschung zu gewinnen.}, language = {de} }