@phdthesis{Riedel2023, author = {Riedel, Soraya Lisanne}, title = {Development of electrochemical antibody-based and enzymatic assays for mycotoxin analysis in food}, doi = {10.25932/publishup-60747}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-607477}, school = {Universit{\"a}t Potsdam}, pages = {XV, 95}, year = {2023}, abstract = {Electrochemical methods are promising to meet the demand for easy-to-use devices monitoring key parameters in the food industry. Many companies run own lab procedures for mycotoxin analysis, but it is a major goal to simplify the analysis. The enzyme-linked immunosorbent assay using horseradish peroxidase as enzymatic label, together with 3,3',5,5' tetramethylbenzidine (TMB)/H2O2 as substrates allows sensitive mycotoxin detection with optical detection methods. For the miniaturization of the detection step, an electrochemical system for mycotoxin analysis was developed. To this end, the electrochemical detection of TMB was studied by cyclic voltammetry on different screen-printed electrodes (carbon and gold) and at different pH values (pH 1 and pH 4). A stable electrode reaction, which is the basis for the further construction of the electrochemical detection system, could be achieved at pH 1 on gold electrodes. An amperometric detection method for oxidized TMB, using a custom-made flow cell for screen-printed electrodes, was established and applied for a competitive magnetic bead-based immunoassay for the mycotoxin ochratoxin A. A limit of detection of 150 pM (60 ng/L) could be obtained and the results were verified with optical detection. The applicability of the magnetic bead-based immunoassay was tested in spiked beer using a handheld potentiostat connected via Bluetooth to a smartphone for amperometric detection allowing to quantify ochratoxin A down to 1.2 nM (0.5 µg/L). Based on the developed electrochemical detection system for TMB, the applicability of the approach was demonstrated with a magnetic bead-based immunoassay for the ergot alkaloid, ergometrine. Under optimized assay conditions a limit of detection of 3 nM (1 µg/L) was achieved and in spiked rye flour samples ergometrine levels in a range from 25 to 250 µg/kg could be quantified. All results were verified with optical detection. The developed electrochemical detection method for TMB gives great promise for the detection of TMB in many other HRP-based assays. A new sensing approach, based on an enzymatic electrochemical detection system for the mycotoxin fumonisin B1 was established using an Aspergillus niger fumonisin amine oxidase (AnFAO). AnFAO was produced recombinantly in E. coli as maltose-binding protein fusion protein and catalyzes the oxidative deamination of fumonisins, producing hydrogen peroxide. It was found that AnFAO has a high storage and temperature stability. The enzyme was coupled covalently to magnetic particles, and the enzymatically produced H2O2 in the reaction with fumonisin B1 was detected amperometrically in a flow injection system using Prussian blue/carbon electrodes and the custom-made wall-jet flow cell. Fumonisin B1 could be quantified down to 1.5 µM (≈ 1 mg/L). The developed system represents a new approach to detect mycotoxins using enzymes and electrochemical methods.}, language = {en} } @phdthesis{Stanke2023, author = {Stanke, Sandra}, title = {AC electrokinetic immobilization of influenza viruses and antibodies on nanoelectrode arrays for on-chip immunoassays}, doi = {10.25932/publishup-61716}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-617165}, school = {Universit{\"a}t Potsdam}, pages = {x, 115}, year = {2023}, abstract = {In the present thesis, AC electrokinetic forces, like dielectrophoresis and AC electroosmosis, were demonstrated as a simple and fast method to functionalize the surface of nanoelectrodes with submicrometer sized biological objects. These nanoelectrodes have a cylindrical shape with a diameter of 500 nm arranged in an array of 6256 electrodes. Due to its medical relevance influenza virus as well as anti-influenza antibodies were chosen as a model organism. Common methods to bring antibodies or proteins to biosensor surfaces are complex and time-consuming. In the present work, it was demonstrated that by applying AC electric fields influenza viruses and antibodies can be immobilized onto the nanoelectrodes within seconds without any prior chemical modification of neither the surface nor the immobilized biological object. The distribution of these immobilized objects is not uniform over the entire array, it exhibits a decreasing gradient from the outer row to the inner ones. Different causes for this gradient have been discussed, such as the vortex-shaped fluid motion above the nanoelectrodes generated by, among others, electrothermal fluid flow. It was demonstrated that parts of the accumulated material are permanently immobilized to the electrodes. This is a unique characteristic of the presented system since in the literature the AC electrokinetic immobilization is almost entirely presented as a method just for temporary immobilization. The spatial distribution of the immobilized viral material or the anti-influenza antibodies at the electrodes was observed by either the combination of fluorescence microscopy and deconvolution or by super-resolution microscopy (STED). On-chip immunoassays were performed to examine the suitability of the functionalized electrodes as a potential affinity-based biosensor. Two approaches were pursued: A) the influenza virus as the bio-receptor or B) the influenza virus as the analyte. Different sources of error were eliminated by ELISA and passivation experiments. Hence, the activity of the immobilized object was inspected by incubation with the analyte. This resulted in the successful detection of anti-influenza antibodies by the immobilized viral material. On the other hand, a detection of influenza virus particles by the immobilized anti-influenza antibodies was not possible. The latter might be due to lost activity or wrong orientation of the antibodies. Thus, further examinations on the activity of by AC electric fields immobilized antibodies should follow. When combined with microfluidics and an electrical read-out system, the functionalized chips possess the potential to serve as a rapid, portable, and cost-effective point-of-care (POC) device. This device can be utilized as a basis for diverse applications in diagnosing and treating influenza, as well as various other pathogens.}, language = {en} }