@phdthesis{Kesten2004, author = {Kesten, Dagmar}, title = {Structural observations at the southern Dead Sea Transform from seismic reflection data and ASTER satellite images}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001807}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Die folgende Arbeit ist Teil des multidisziplin{\"a}ren Projektes DESERT (DEad SEa Rift Transect), welches seit dem Jahr 2000 im Nahen Osten durchgef{\"u}hrt wird. Dabei geht es prim{\"a}r um die Struktur der s{\"u}dlichen Dead Sea Transform (DST; Tote-Meer-Transformst{\"o}rung), Plattengrenze zwischen Afrika (Sinai) und der Arabischen Mikroplatte. Seit dem Mioz{\"a}n betr{\"a}gt der sinistrale Versatz an dieser bedeutenden aktiven Blattverschiebung mehr als 100 km. Das steilwinkelseismische (NVR) Experiment von DESERT querte die DST im Arava Tal zwischen Rotem Meer und Totem Meer, wo die Hauptst{\"o}rung auch Arava Fault genannt wird. Das 100 km lange Profil erstreckte sich von Sede Boqer/Israel im Nordwesten nach Ma'an/Jordanien im S{\"u}dosten und f{\"a}llt mit dem zentralen Teil einer weitwinkelseismischen Profillinie zusammen. Steilwinkelseismische Messungen stellen bei der Bestimmung der Krustenstruktur bis zur Krusten/Mantel-Grenze ein wichtiges Instrument dar. Obwohl es kaum m{\"o}glich ist, steilstehende St{\"o}rungszonen direkt abzubilden, geben abrupte Ver{\"a}nderungen des Reflektivit{\"a}tsmuster oder pl{\"o}tzlich endende Reflektoren indirekte Hinweise auf Transformbewegung. Da bis zum DESERT Experiment keine anderen reflexionsseismischen Messungen {\"u}ber die DST ausgef{\"u}hrt worden waren, waren wichtige Aspekte dieser Transform-Plattengrenze und der damit verbundenen Krustenstruktur nicht bekannt. Mit dem Projekt sollte deshalb untersucht werden, wie sich die DST sowohl in der oberen als auch in der unteren Kruste manifestiert. Zu den Fragestellungen geh{\"o}rte unter anderem, ob sich die DST bis in den Mantel fortsetzt und ob ein Versatz der Krusten/Mantel-Grenze beobachtet werden kann. So ein Versatz ist von anderen großen Transformst{\"o}rungen bekannt. In der vorliegenden Arbeit werden zun{\"a}chst die Methode der Steilwinkelseismik und die Datenverarbeitung kurz erl{\"a}utert, bevor die Daten geologisch interpretiert werden. Bei der Interpetation werden die Ergebnisse anderer relevanter Studien ber{\"u}cksichtigt. Geologische Gel{\"a}ndearbeiten im Gebiet des NVR Profiles ergaben, dass die Arava Fault zum Teil charakterisiert ist durch niedrige Steilstufen in den neogenen Sedimenten, durch kleine Druckr{\"u}cken oder Rhomb-Gr{\"a}ben. Ein typischer Aufbau der St{\"o}rungszone mit einem St{\"o}rungskern, einer st{\"o}rungsbezogenen Deformationszone und einem undeformierten Ausgangsgestein, wie er von anderen großen St{\"o}rungszonen beschrieben worden ist, konnte nicht gefunden werden. Deshalb wurden zur Erg{\"a}nzung der Reflexionsseismik, welche vor allem die tieferen Krustenstrukturen abbildet, ASTER (Advanced Spacebourne Thermal Emission and Reflection Radiometer) Satellitendaten herangezogen, um oberfl{\"a}chennahe Deformation und neotektonische Aktivit{\"a}t zu bestimmen.}, language = {en} } @phdthesis{Ramos2018, author = {Ramos, Catalina}, title = {Structure and petrophysical properties of the Southern Chile subduction zone along 38.25°S from seismic data}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-409183}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 111}, year = {2018}, abstract = {Active and passive source data from two seismic experiments within the interdisciplinary project TIPTEQ (from The Incoming Plate to mega Thrust EarthQuake processes) were used to image and identify the structural and petrophysical properties (such as P- and S-velocities, Poisson's ratios, pore pressure, density and amount of fluids) within the Chilean seismogenic coupling zone at 38.25°S, where in 1960 the largest earthquake ever recorded (Mw 9.5) occurred. Two S-wave velocity models calculated using traveltime and noise tomography techniques were merged with an existing velocity model to obtain a 2D S-wave velocity model, which gathered the advantages of each individual model. In a following step, P- and S-reflectivity images of the subduction zone were obtained using different pre stack and post-stack depth migration techniques. Among them, the recent prestack line-drawing depth migration scheme yielded revealing results. Next, synthetic seismograms modelled using the reflectivity method allowed, through their input 1D synthetic P- and S-velocities, to infer the composition and rocks within the subduction zone. Finally, an image of the subduction zone is given, jointly interpreting the results from this work with results from other studies. The Chilean seismogenic coupling zone at 38.25°S shows a continental crust with highly reflective horizontal, as well as (steep) dipping events. Among them, the Lanalhue Fault Zone (LFZ), which is interpreted to be east-dipping, is imaged to very shallow depths. Some steep reflectors are observed for the first time, for example one near the coast, related to high seismicity and another one near the LFZ. Steep shallow reflectivity towards the volcanic arc could be related to a steep west-dipping reflector interpreted as fluids and/or melts, migrating upwards due to material recycling in the continental mantle wedge. The high resolution of the S-velocity model in the first kilometres allowed to identify several sedimentary basins, characterized by very low P- and S-velocities, high Poisson's ratios and possible steep reflectivity. Such high Poisson's ratios are also observed within the oceanic crust, which reaches the seismogenic zone hydrated due to bending-related faulting. It is interpreted to release water until reaching the coast and under the continental mantle wedge. In terms of seismic velocities, the inferred composition and rocks in the continental crust is in agreement with field geology observations at the surface along the proflle. Furthermore, there is no requirement to call on the existence of measurable amounts of present-day fluids above the plate interface in the continental crust of the Coastal Cordillera and the Central Valley in this part of the Chilean convergent margin. A large-scale anisotropy in the continental crust and upper mantle, previously proposed from magnetotelluric studies, is proposed from seismic velocities. However, quantitative studies on this topic in the continental crust of the Chilean seismogenic zone at 38.25°S do not exist to date.}, language = {en} }