@phdthesis{tenBrummelhuis2011, author = {ten Brummelhuis, Niels}, title = {Self-assembly of cross-linked polymer micelles into complex higher-order aggregates}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-52320}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {The creation of complex polymer structures has been one of the major research topics over the last couple of decades. This work deals with the synthesis of (block co-)polymers, the creation of complex and stimuli-responsive aggregates by self-assembly, and the cross-linking of these structures. Also the higher-order self-assembly of the aggregates is investigated. The formation of poly-2-oxazoline based micelles in aqueous solution and their simultaneous functionalization and cross-linking using thiol-yne chemistry is e.g. presented. By introducing pH responsive thiols in the core of the micelles the influence of charged groups in the core of micelles on the entire structure can be studied. The charging of these groups leads to a swelling of the core and a decrease in the local concentration of the corona forming block (poly(2-ethyl-2-oxazoline)). This decrease in concentration yields a shift in the cloud point temperature to higher temperatures for this Type I thermoresponsive polymer. When the swelling of the core is prohibited, e.g. by the introduction of sufficient amounts of salt, this behavior disappears. Similar structures can be prepared using complex coacervate core micelles (C3Ms) built through the interaction of weakly acidic and basic polymer blocks. The advantage of these structures is that two different stabilizing blocks can be incorporated, which allows for more diverse and complex structures and behavior of the micelles. Using block copolymers with either a polyanionic or a polycationic block C3Ms could be created with a corona which contains two different soluble nonionic polymers, which either have a mixed corona or a Janus type corona, depending on the polymers that were chosen. Using NHS and EDC the micelles could easily be cross-linked by the formation of amide bonds in the core of the micelles. The higher-order self-assembly behavior of these core cross-linked complex coacervate core micelles (C5Ms) was studied. Due to the cross-linking the micelles are stabilized towards changes in pH and ionic strength, but polymer chains are also no longer able to rearrange. For C5Ms with a mixed corona likely network structures were formed upon the collapse of the thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm), whereas for Janus type C5Ms well defined spherical aggregates of micelles could be obtained, depending on the pH of the solution. Furthermore it could be shown that Janus micelles can adsorb onto inorganic nanoparticles such as colloidal silica (through a selective interaction between PEO and the silica surface) or gold nanoparticles (by the binding of thiol end-groups). Asymmetric aggregates were also formed using the streptavidin-biotin binding motive. This is achieved by using three out of the four binding sites of streptavidin for the binding of one three-arm star polymer, end-functionalized with biotin groups. A homopolymer with one biotin end-group can be used to occupy the last position. This binding of two different polymers makes it possible to create asymmetric complexes. This phase separation is theoretically independent of the kind of polymer since the structure of the protein is the driving force, not the intrinsic phase separation between polymers. Besides Janus structures also specific cross-linking can be achieved by using other mixing ratios.}, language = {en} } @phdthesis{Izraylit2021, author = {Izraylit, Victor}, title = {Reprogrammable and tunable actuation in multiblock copolymer blends}, doi = {10.25932/publishup-51843}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-518434}, school = {Universit{\"a}t Potsdam}, pages = {104}, year = {2021}, abstract = {Soft actuators have drawn significant attention due to their relevance for applications, such as artificial muscles in devices developed for medicine and robotics. Tuning their performance and expanding their functionality are frequently done by means of chemical modification. The introduction of structural elements rendering non-synthetic modification of the performance possible, as well as control over physical appearance and facilitating their recycling is a subject of a great interest in the field of smart materials. The primary aim of this thesis was to create a shape-memory polymeric actuator, where the capability for non-synthetic tuning of the actuation performance is combined with reprocessability. Physically cross-linked polymeric matrices provide a solid material platform, where the in situ processing methods can be employed for modification of the composition and morphology, resulting in the fine tuning of the related mechanical properties and shape-memory actuation capability. The morphological features, required for shape-memory polymeric actuators, namely two crystallisable domains and anchoring points for physical cross-links, were embedded into a multiblock copolymer with poly(ε-caprolactone) and poly(L-lactide) segments (PLLA-PCL). Here, the melting transition of PCL was bisected into the actuating and skeleton-forming units, while the cross-linking was introduced via PLA stereocomplexation in blends with oligomeric poly(D-lactide) (ODLA). PLLA segment number average length of 12-15 repeating units was experimentally defined to be capable of the PLA stereocomplexes formation, but not sufficient for the isotactic crystallisation. Multiblock structure and phase dilution broaden the PCL melting transition, facilitating its separation into two conditionally independent crystalline domains. Low molar mass of the PLA stereocomplex components and a multiblock structure enables processing and reprocessing of the PLLA-PCL / ODLA blends with common non-destructive techniques. The modularity of the PLLA-PCL structure and synthetic approach allows for independent tuning of the properties of its components. The designed material establishes a solid platform for non-synthetic tuning of thermomechanical and structural properties of thermoplastic elastomers. To evaluate the thermomechanical stability of the formed physical network, three criteria were appraised. As physical cross-links, PLA stereocomplexes have to be evenly distributed within the material matrix, their melting temperature shall not overlap with the thermal transitions of the PCL domains and they have to maintain the structural integrity within the strain ε ranges further applied in the shape-memory actuation experiments. Assigning PCL the function of the skeleton-forming and actuating units, and PLA stereocomplexes the role of physical netpoints, shape-memory actuation was realised in the PLLA-PCL / ODLA blends. Reversible strain of shape-memory actuation was found to be a function of PLA stereocomplex crystallinity, i.e. physical cross-linking density, with a maximum of 13.4 ± 1.5\% at PLA stereocomplex content of 3.1 ± 0.3 wt\%. In this way, shape-memory actuation can be tuned via adjusting the composition of the PLLA-PCL / ODLA blend. This makes the developed material a valuable asset in the production of cost-effective tunable soft polymeric actuators for the applications in medicine and soft robotics.}, language = {en} }