@phdthesis{Wallenta2015, author = {Wallenta, Daniel}, title = {Sequences of compact curvature}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-87489}, school = {Universit{\"a}t Potsdam}, pages = {viii, 73}, year = {2015}, abstract = {By perturbing the differential of a (cochain-)complex by "small" operators, one obtains what is referred to as quasicomplexes, i.e. a sequence whose curvature is not equal to zero in general. In this situation the cohomology is no longer defined. Note that it depends on the structure of the underlying spaces whether or not an operator is "small." This leads to a magical mix of perturbation and regularisation theory. In the general setting of Hilbert spaces compact operators are "small." In order to develop this theory, many elements of diverse mathematical disciplines, such as functional analysis, differential geometry, partial differential equation, homological algebra and topology have to be combined. All essential basics are summarised in the first chapter of this thesis. This contains classical elements of index theory, such as Fredholm operators, elliptic pseudodifferential operators and characteristic classes. Moreover we study the de Rham complex and introduce Sobolev spaces of arbitrary order as well as the concept of operator ideals. In the second chapter, the abstract theory of (Fredholm) quasicomplexes of Hilbert spaces will be developed. From the very beginning we will consider quasicomplexes with curvature in an ideal class. We introduce the Euler characteristic, the cone of a quasiendomorphism and the Lefschetz number. In particular, we generalise Euler's identity, which will allow us to develop the Lefschetz theory on nonseparable Hilbert spaces. Finally, in the third chapter the abstract theory will be applied to elliptic quasicomplexes with pseudodifferential operators of arbitrary order. We will show that the Atiyah-Singer index formula holds true for those objects and, as an example, we will compute the Euler characteristic of the connection quasicomplex. In addition to this we introduce geometric quasiendomorphisms and prove a generalisation of the Lefschetz fixed point theorem of Atiyah and Bott.}, language = {en} }