@phdthesis{Gehring2023, author = {Gehring, Penelope}, title = {Non-local boundary conditions for the spin Dirac operator on spacetimes with timelike boundary}, doi = {10.25932/publishup-57775}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-577755}, school = {Universit{\"a}t Potsdam}, pages = {100}, year = {2023}, abstract = {Non-local boundary conditions - for example the Atiyah-Patodi-Singer (APS) conditions - for Dirac operators on Riemannian manifolds are rather well-understood, while not much is known for such operators on Lorentzian manifolds. Recently, B{\"a}r and Strohmaier [15] and Drago, Große, and Murro [27] introduced APS-like conditions for the spin Dirac operator on Lorentzian manifolds with spacelike and timelike boundary, respectively. While B{\"a}r and Strohmaier [15] showed the Fredholmness of the Dirac operator with these boundary conditions, Drago, Große, and Murro [27] proved the well-posedness of the corresponding initial boundary value problem under certain geometric assumptions. In this thesis, we will follow the footsteps of the latter authors and discuss whether the APS-like conditions for Dirac operators on Lorentzian manifolds with timelike boundary can be replaced by more general conditions such that the associated initial boundary value problems are still wellposed. We consider boundary conditions that are local in time and non-local in the spatial directions. More precisely, we use the spacetime foliation arising from the Cauchy temporal function and split the Dirac operator along this foliation. This gives rise to a family of elliptic operators each acting on spinors of the spin bundle over the corresponding timeslice. The theory of elliptic operators then ensures that we can find families of non-local boundary conditions with respect to this family of operators. Proceeding, we use such a family of boundary conditions to define a Lorentzian boundary condition on the whole timelike boundary. By analyzing the properties of the Lorentzian boundary conditions, we then find sufficient conditions on the family of non-local boundary conditions that lead to the well-posedness of the corresponding Cauchy problems. The well-posedness itself will then be proven by using classical tools including energy estimates and approximation by solutions of the regularized problems. Moreover, we use this theory to construct explicit boundary conditions for the Lorentzian Dirac operator. More precisely, we will discuss two examples of boundary conditions - the analogue of the Atiyah-Patodi-Singer and the chirality conditions, respectively, in our setting. For doing this, we will have a closer look at the theory of non-local boundary conditions for elliptic operators and analyze the requirements on the family of non-local boundary conditions for these specific examples.}, language = {en} }