@phdthesis{Seidel2021, author = {Seidel, Karen}, title = {Modelling binary classification with computability theory}, doi = {10.25932/publishup-52998}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-529988}, school = {Universit{\"a}t Potsdam}, pages = {viii, 120}, year = {2021}, abstract = {We investigate models for incremental binary classification, an example for supervised online learning. Our starting point is a model for human and machine learning suggested by E.M.Gold. In the first part, we consider incremental learning algorithms that use all of the available binary labeled training data in order to compute the current hypothesis. For this model, we observe that the algorithm can be assumed to always terminate and that the distribution of the training data does not influence learnability. This is still true if we pose additional delayable requirements that remain valid despite a hypothesis output delayed in time. Additionally, we consider the non-delayable requirement of consistent learning. Our corresponding results underpin the claim for delayability being a suitable structural property to describe and collectively investigate a major part of learning success criteria. Our first theorem states the pairwise implications or incomparabilities between an established collection of delayable learning success criteria, the so-called complete map. Especially, the learning algorithm can be assumed to only change its last hypothesis in case it is inconsistent with the current training data. Such a learning behaviour is called conservative. By referring to learning functions, we obtain a hierarchy of approximative learning success criteria. Hereby we allow an increasing finite number of errors of the hypothesized concept by the learning algorithm compared with the concept to be learned. Moreover, we observe a duality depending on whether vacillations between infinitely many different correct hypotheses are still considered a successful learning behaviour. This contrasts the vacillatory hierarchy for learning from solely positive information. We also consider a hypothesis space located between the two most common hypothesis space types in the nearby relevant literature and provide the complete map. In the second part, we model more efficient learning algorithms. These update their hypothesis referring to the current datum and without direct regress to past training data. We focus on iterative (hypothesis based) and BMS (state based) learning algorithms. Iterative learning algorithms use the last hypothesis and the current datum in order to infer the new hypothesis. Past research analyzed, for example, the above mentioned pairwise relations between delayable learning success criteria when learning from purely positive training data. We compare delayable learning success criteria with respect to iterative learning algorithms, as well as learning from either exclusively positive or binary labeled data. The existence of concept classes that can be learned by an iterative learning algorithm but not in a conservative way had already been observed, showing that conservativeness is restrictive. An additional requirement arising from cognitive science research \%and also observed when training neural networks is U-shapedness, stating that the learning algorithm does diverge from a correct hypothesis. We show that forbidding U-shapes also restricts iterative learners from binary labeled data. In order to compute the next hypothesis, BMS learning algorithms refer to the currently observed datum and the actual state of the learning algorithm. For learning algorithms equipped with an infinite amount of states, we provide the complete map. A learning success criterion is semantic if it still holds, when the learning algorithm outputs other parameters standing for the same classifier. Syntactic (non-semantic) learning success criteria, for example conservativeness and syntactic non-U-shapedness, restrict BMS learning algorithms. For proving the equivalence of the syntactic requirements, we refer to witness-based learning processes. In these, every change of the hypothesis is justified by a later on correctly classified witness from the training data. Moreover, for every semantic delayable learning requirement, iterative and BMS learning algorithms are equivalent. In case the considered learning success criterion incorporates syntactic non-U-shapedness, BMS learning algorithms can learn more concept classes than iterative learning algorithms. The proofs are combinatorial, inspired by investigating formal languages or employ results from computability theory, such as infinite recursion theorems (fixed point theorems).}, language = {en} }