@phdthesis{Hoffmann2007, author = {Hoffmann, Toni}, title = {Cloning and characterisation of the HMA3 gene and its promoter from Arabidopsis halleri (L.) O'Kane and Al'Shehbaz and Arabidopsis thaliana (L.) Heynhold}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-15259}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {Being living systems unable to adjust their location to changing environmental conditions, plants display homeostatic networks that have evolved to maintain transition metal levels in a very narrow concentration range in order to avoid either deficiency or toxicity. Hence, plants possess a broad repertoire of mechanisms for the cellular uptake, compartmentation and efflux, as well as for the chelation of transition metal ions. A small number of plants are hypertolerant to one or a few specific transition metals. Some metal tolerant plants are also able to hyperaccumulate metal ions. The Brassicaceae family member Arabidopis halleri ssp. halleri (L.) O´KANE and AL´SHEHBAZ is a hyperaccumulator of zinc (Zn), and it is closely related to the non-hypertolerant and non-hyperaccumulating model plant Arabidopsis thaliana (L.) HEYNHOLD. The close relationship renders A. halleri a promising emerging model plant for the comparative investigation of the molecular mechanisms behind hypertolerance and hyperaccumulation. Among several potential candidate genes that are probably involved in mediating the zinc-hypertolerant and zinc-hyperaccumulating trait is AhHMA3. The AhHMA3 gene is highly similar to AtHMA3 (AGI number: At4g30120) in A. thaliana, and its encoded protein belongs to the P-type IB ATPase family of integral membrane transporter proteins that transport transition metals. In contrast to the low AtHMA3 transcript levels in A. thaliana, the gene was found to be constitutively highly expressed across different Zn treatments in A. halleri, especially in shoots. In this study, the cloning and characterisation of the HMA3 gene and its promoter from Arabidopsis halleri (L.) O´KANE and AL´SHEHBAZ and Arabidopsis thaliana (L.) HEYNHOLD is described. Heterologously expressed AhHMA3 mediated enhanced tolerance to Zn and to a much lesser degree to cadmium (Cd) but not to cobalt (Co) in metal-sensitive mutant strains of budding yeast. It is demonstrated that the genome of A. halleri contains at least four copies of AhHMA3, AhHMA3-1 to AhHMA3-4. A copy-specific real-time RT-PCR indicated that an AhHMA3-1 related gene copy is the source of the constitutively high transcript level in A. halleri and not a gene copy similar to AhHMA3-2 or AhHMA3-4. In accordance with the enhanced AtHMA3mRNA transcript level in A. thaliana roots, an AtHMA3 promoter-GUS gene construct mediated GUS activity predominantly in the vascular tissues of roots and not in shoots. However, the observed AhHMA3-1 and AhHMA3-2 promoter-mediated GUS activity in A. thaliana or A. halleri plants did not reflect the constitutively high expression of AhHMA3 in shoots of A. halleri. It is suggested that other factors e. g. characteristic sequence inserts within the first intron of AhHMA3-1 might enable a constitutively high expression. Moreover, the unknown promoter of the AhHMA3-3 gene copy could be the source of the constitutively high AhHMA3 transcript levels in A. halleri. In that case, the AhHMA3-3 sequence is predicted to be highly homologous to AhHMA3-1. The lack of solid localisation data for the AhHMA3 protein prevents a clear functional assignment. The provided data suggest several possible functions of the AhHMA3 protein: Like AtHMA2 and AtHMA4 it might be localised to the plasma membrane and could contribute to the efficient translocation of Zn from root to shoot and/or to the cell-to-cell distribution of Zn in the shoot. If localised to the vacuolar membrane, then a role in maintaining a low cytoplasmic zinc concentration by vacuolar zinc sequestration is possible. In addition, AhHMA3 might be involved in the delivery of zinc ions to trichomes and mesophyll leaf cells that are major zinc storage sites in A. halleri.}, language = {en} } @phdthesis{Glatzel2013, author = {Glatzel, Stefan}, title = {Cellulose based transition metal nano-composites : structuring and development}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-64678}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Cellulose is the most abundant biopolymer on earth. In this work it has been used, in various forms ranging from wood to fully processed laboratory grade microcrystalline cellulose, to synthesise a variety of metal and metal carbide nanoparticles and to establish structuring and patterning methodologies that produce highly functional nano-hybrids. To achieve this, the mechanisms governing the catalytic processes that bring about graphitised carbons in the presence of iron have been investigated. It was found that, when infusing cellulose with an aqueous iron salt solution and heating this mixture under inert atmosphere to 640 °C and above, a liquid eutectic mixture of iron and carbon with an atom ratio of approximately 1:1 forms. The eutectic droplets were monitored with in-situ TEM at the reaction temperature where they could be seen dissolving amorphous carbon and leaving behind a trail of graphitised carbon sheets and subsequently iron carbide nanoparticles. These transformations turned ordinary cellulose into a conductive and porous matrix that is well suited for catalytic applications. Despite these significant changes on the nanometre scale the shape of the matrix as a whole was retained with remarkable precision. This was exemplified by folding a sheet of cellulose paper into origami cranes and converting them via the temperature treatment in to magnetic facsimiles of those cranes. The study showed that the catalytic mechanisms derived from controlled systems and described in the literature can be transferred to synthetic concepts beyond the lab without loss of generality. Once the processes determining the transformation of cellulose into functional materials were understood, the concept could be extended to other metals and metal-combinations. Firstly, the procedure was utilised to produce different ternary iron carbides in the form of MxFeyC (M = W, Mn). None of those ternary carbides have thus far been produced in a nanoparticle form. The next part of this work encompassed combinations of iron with cobalt, nickel, palladium and copper. All of those metals were also probed alone in combination with cellulose. This produced elemental metal and metal alloy particles of low polydispersity and high stability. Both features are something that is typically not associated with high temperature syntheses and enables to connect the good size control with a scalable process. Each of the probed reactions resulted in phase pure, single crystalline, stable materials. After showing that cellulose is a good stabilising and separating agent for all the investigated types of nanoparticles, the focus of the work at hand is shifted towards probing the limits of the structuring and pattering capabilities of cellulose. Moreover possible post-processing techniques to further broaden the applicability of the materials are evaluated. This showed that, by choosing an appropriate paper, products ranging from stiff, self-sustaining monoliths to ultra-thin and very flexible cloths can be obtained after high temperature treatment. Furthermore cellulose has been demonstrated to be a very good substrate for many structuring and patterning techniques from origami folding to ink-jet printing. The thereby resulting products have been employed as electrodes, which was exemplified by electrodepositing copper onto them. Via ink-jet printing they have additionally been patterned and the resulting electrodes have also been post functionalised by electro-deposition of copper onto the graphitised (printed) parts of the samples. Lastly in a preliminary test the possibility of printing several metals simultaneously and thereby producing finely tuneable gradients from one metal to another have successfully been made. Starting from these concepts future experiments were outlined. The last chapter of this thesis concerned itself with alternative synthesis methods of the iron-carbon composite, thereby testing the robustness of the devolved reactions. By performing the synthesis with partly dissolved scrap metal and pieces of raw, dry wood, some progress for further use of the general synthesis technique were made. For example by using wood instead of processed cellulose all the established shaping techniques available for wooden objects, such as CNC milling or 3D prototyping, become accessible for the synthesis path. Also by using wood its intrinsic well defined porosity and the fact that large monoliths are obtained help expanding the prospect of using the composite. It was also demonstrated in this chapter that the resulting material can be applied for the environmentally important issue of waste water cleansing. Additionally to being made from renewable resources and by a cheap and easy one-pot synthesis, the material is recyclable, since the pollutants can be recovered by washing with ethanol. Most importantly this chapter covered experiments where the reaction was performed in a crude, home-built glass vessel, fuelled - with the help of a Fresnel lens - only by direct concentrated sunlight irradiation. This concept carries the thus far presented synthetic procedures from being common laboratory syntheses to a real world application. Based on cellulose, transition metals and simple equipment, this work enabled the easy one-pot synthesis of nano-ceramic and metal nanoparticle composites otherwise not readily accessible. Furthermore were structuring and patterning techniques and synthesis routes involving only renewable resources and environmentally benign procedures established here. Thereby it has laid the foundation for a multitude of applications and pointed towards several future projects reaching from fundamental research, to application focussed research and even and industry relevant engineering project was envisioned.}, language = {en} } @phdthesis{Willig2019, author = {Willig, Lisa}, title = {Ultrafast magneto-optical studies of remagnetisation dynamics in transition metals}, doi = {10.25932/publishup-44194}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-441942}, school = {Universit{\"a}t Potsdam}, pages = {XIV, 113, XVII}, year = {2019}, abstract = {Ultrafast magnetisation dynamics have been investigated intensely for two decades. The recovery process after demagnetisation, however, was rarely studied experimentally and discussed in detail. The focus of this work lies on the investigation of the magnetisation on long timescales after laser excitation. It combines two ultrafast time resolved methods to study the relaxation of the magnetic and lattice system after excitation with a high fluence ultrashort laser pulse. The magnetic system is investigated by time resolved measurements of the magneto-optical Kerr effect. The experimental setup has been implemented in the scope of this work. The lattice dynamics were obtained with ultrafast X-ray diffraction. The combination of both techniques leads to a better understanding of the mechanisms involved in magnetisation recovery from a non-equilibrium condition. Three different groups of samples are investigated in this work: Thin Nickel layers capped with nonmagnetic materials, a continuous sample of the ordered L10 phase of Iron Platinum and a sample consisting of Iron Platinum nanoparticles embedded in a carbon matrix. The study of the remagnetisation reveals a general trend for all of the samples: The remagnetisation process can be described by two time dependences. A first exponential recovery that slows down with an increasing amount of energy absorbed in the system until an approximately linear time dependence is observed. This is followed by a second exponential recovery. In case of low fluence excitation, the first recovery is faster than the second. With increasing fluence the first recovery is slowed down and can be described as a linear function. If the pump-induced temperature increase in the sample is sufficiently high, a phase transition to a paramagnetic state is observed. In the remagnetisation process, the transition into the ferromagnetic state is characterised by a distinct transition between the linear and exponential recovery. From the combination of the transient lattice temperature Tp(t) obtained from ultrafast X-ray measurements and magnetisation M(t) gained from magneto-optical measurements we construct the transient magnetisation versus temperature relations M(Tp). If the lattice temperature remains below the Curie temperature the remagnetisation curve M(Tp) is linear and stays below the M(T) curve in equilibrium in the continuous transition metal layers. When the sample is heated above phase transition, the remagnetisation converges towards the static temperature dependence. For the granular Iron Platinum sample the M(Tp) curves for different fluences coincide, i.e. the remagnetisation follows a similar path irrespective of the initial laser-induced temperature jump.}, language = {en} }