@phdthesis{Stefer2009, author = {Stefer, Susanne}, title = {Late Pleistocene-Holocene sedimentary processes at the active margin of South-Central Chile : marine and lacustrine sediment records as archives of tectonics and climate variability}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-33731}, school = {Universit{\"a}t Potsdam}, year = {2009}, abstract = {Active continental margins are affected by complex feedbacks between tectonic, climate and surface processes, the intricate relations of which are still a matter of discussion. The Chilean convergent margin, forming the outstanding Andean subduction orogen, constitutes an ideal natural laboratory for the investigation of climate, tectonics and their interactions. In order to study both processes, I examined marine and lacustrine sediments from different depositional environments on- and offshore the south-central Chilean coast (38-40°S). I combined sedimentological, geochemical and isotopical analyses to identify climatic and tectonic signals within the sedimentary records. The investigation of marine trench sediments (ODP Site 1232, SONNE core 50SL) focused on frequency changes of turbiditic event layers since the late Pleistocene. In the active margin setting of south-central Chile, these layers were considered to reflect periodically occurring earthquakes and to constitute an archive of the regional paleoseismicity. The new results indicate glacial-interglacial changes in turbidite frequencies during the last 140 kyr, with short recurrence times (~200 years) during glacial and long recurrence times (~1000 years) during interglacial periods. Hence, the generation of turbidites appears to be strongly influenced by climate and sea level changes, which control on the amount of sediment delivered to the shelf edge and therewith the stability of the continental slope: more stable slope conditions during interglacial periods entail lower turbidite frequencies than in glacial periods. Since glacial turbidite recurrence times are congruent with earthquake recurrence times derived from the historical record and other paleoseismic archives of the region, I concluded that only during cold stages the sediment availability and slope instability enabled the complete series of large earthquakes to be recorded. The sediment transport to the shelf region is not only driven by climate conditions but also influenced by local forearc tectonics. Accelerating uplift rates along major tectonic structures involved drainage anomalies and river flow inversions, which seriously altered the sediment supply to the Pacific Ocean. Two examples for the tectonic hindrance of fluvial systems are the coastal lakes Lago Lanalhue and Lago Lleu Lleu. Both lakes developed within former river valleys, which once discharged towards the Pacific and were dammed by tectonically uplifted sills at ~8000 yr BP. Analyses of sediment cores from the lakes showed similar successions of marine/brackish deposits at the bottom, covered by lacustrine sediments on top. Dating of the transitions between these different units and the comparison with global sea level curves allowed me to calculate local Holocene uplift rates, which are distinctly higher for the upraised sills (Lanalhue: 8.83 ± 2.7 mm/yr, Lleu Lleu: 11.36 ± 1.77 mm/yr) than for the lake basins (Lanalhue: 0.42 ± 0.71 mm/yr, Lleu Lleu: 0.49 ± 0.44 mm/yr). I hence considered the sills to be the surface expression of a blind thrust associated with a prominent inverse fault that is controlling regional uplift and folding. After the final separation of Lago Lanalhue and Lago Lleu Lleu from the Pacific, a constant deposition of lacustrine sediments preserved continuous records of local environmental changes. Sequences from both lakes indicate a long-term climate trend with a significant shift from more arid conditions during the Mid-Holocene (8000 - 4200 cal yr BP) to more humid conditions during the Late Holocene (4200 cal yr BP - present). This trend is consistent with other regional paleoclimatic data and interpreted to reflect changes in the strength/position of the Southern Westerly Winds. Since ~5000 years, sediments of Lago Lleu Lleu are marked by numerous intercalated detrital layers that recur with a mean frequency of ~210 years. Deposition of these layers may be triggered by local tectonics (i.e. earthquakes), but may also originate from changes in the local climate (e.g. onset of modern ENSO conditions). During the last 2000 years, pronounced variations in the terrigenous sediment supply to both lakes suggest important hydrological changes on the centennial time-scale as well. A lower input of terrigenous matter points to less humid phases between 200 cal yr B.C. - 150 cal yr A.D., 900 - 1350 cal yr A.D. and 1850 cal yr A.D. to present (broadly corresponding to the Roman, Medieval, and Modern Warm Periods). More humid periods persisted from 150 - 900 cal yr A.D. and 1350 - 1850 cal yr A.D. (broadly corresponding to the Dark Ages and the Little Ice Age). In conclusion, the combined investigation of marine and lacustrine sediments is a feasible method for the reconstruction of climatic and tectonic processes on different time scales. My approach allows exploring both climate and tectonics in one and the same archive, and is largely transferable to other active margins worldwide.}, language = {en} } @phdthesis{Rehak2008, author = {Rehak, Katrin}, title = {Pliocene-Pleistocene landscape evolution in south-central Chile : interactions between tectonic, geomorphic, and climatic processes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-19793}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {Landscapes evolve in a complex interplay between climate and tectonics. Thus, the geomorphic characteristics of a landscape can only be understood if both, climatic and tectonic signals of past and ongoing processes can be identified. In order to evaluate the impact of both forcing factors it is crucial to quantify the evolution of geomorphic markers in natural environments. The Cenozoic Andes are an ideal setting to evaluate tectonic and climatic aspects of landscape evolution at different time and length scales in different natural compartments. The Andean Cordillera constitutes the type subduction orogen and is associated with the subduction of the oceanic Nazca Plate beneath the South American continent since at least 200 million years. In Chile and the adjacent regions this convergent margin is characterized by active tectonics, volcanism, and mountain building. Importantly, along the coast of Chile megathrust earthquakes occur frequently and influence landscape evolution. In fact, the largest earthquake ever recorded occurred in south-central Chile in 1960 and comprised a rupture zone of ~ 1000 km length. However, on longer time scales beyond historic documentation of seismicity it is not well known, how such seismotectonic segments have behaved and how they influence the geomorphic evolution of the coastal realms. With several semi-independent morphotectonic segments, recurrent megathrust earthquakes, and a plethora of geomorphic features indicating sustained tectonism, the margin of Chile is thus a key area to study relationships between surface processes and tectonics. In this study, I combined geomorphology, geochronology, sedimentology, and morphometry to quantify the Pliocene-Pleistocene landscape evolution of the tectonically active south-central Chile forearc. Thereby, I provide (1) new results about the influence of seismotectonic forearc segmentation on the geomorphic evolution and (2) new insights in the interaction between climate and tectonics with respect to the morphology of the Chilean forearc region. In particular, I show that the forearc is characterized by three long-term segments that are not correlated with short-lived earthquake-rupture zones that may. These segments are the Nahuelbuta, Tolt{\´e}n, and Bueno segments, each recording a distinct geomorphic and tectonic evolution. The Nahuelbuta and Bueno segments are undergoing active tectonic uplift. The long-term behavior of these two segments is manifested in form of two doubly plunging, growing antiforms that constitute an integral part of the Coastal Cordillera and record the uplift of marine and river terraces. In addition, these uplifting areas have caused major changes in flow directions or rivers. In contrast, the Tolt{\´e}n segment, situated between the two other segments, appears to be quasi-stable. In order to further quantify uplift and incision in the actively deforming Nahuelbuta segment, I dated an erosion surface and fluvial terraces in the Coastal Cordillera with cosmogenic 10Be and 26Al and optically stimulated luminescence, respectively. According to my results, late Pleistocene uplift rates corresponding to 0.88 mm a-1 are faster than surface-uplift rates averaging over the last 5 Ma, which are in the range of 0.21 mm a-1. This discrepancy suggests that surface uplift is highly variable in time and space and might preferably concentrate along reverse faults as indicated by a late Pleistocene flow reversal. In addition, the results of exposure dating with cosmogenic 10Be and 26Al indicate that the morphotectonic segmentation of this region of the forearc has been established in Pliocene time, coeval with the initiation of uplift of the Coastal Cordillera about 5 Ma ago, inferred to be related to a shift in subduction mode from erosion to accretion. Finally, I dated volcanic clasts obtained from alluvial surfaces in the Central Depression, a low-relief sector separating the Coastal from the Main Cordillera, with stable cosmogenic 3He and 21Ne, in order to reveal the controls of sediment accumulation in the forearc. My results document that these gently sloping surfaces have been deposited 150 to 300 ka ago. This deposition may be related to changes in the erosional regime during glacial episodes. Taken together, the data indicates that the overall geomorphic expression of the forearc is of post-Miocene age and may be intimately related to a climatic overprint of the tectonic system. This climatic forcing is also reflected in the topography and local relief of the Central and Southern Andes that vary considerably along the margin, determined by the dominant surface process that in turn is eventually controlled by climate. However, relief also partly reflects surface processes that have taken place under past climatic conditions. This emphasizes that due care has to be exercised when interpreting landscapes as mirrors of modern climates.}, language = {en} }