@article{WarrenEllisonBarkovetal.2017, author = {Warren, Donald C. and Ellison, Donald C. and Barkov, Maxim V. and Nagataki, Shigehiro}, title = {Nonlinear Particle Acceleration and Thermal Particles in GRB Afterglows}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {835}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aa56c3}, pages = {15}, year = {2017}, abstract = {The standard model for GRB afterglow emission treats the accelerated electron population as a simple power law, N(E) proportional to E-p for p greater than or similar to 2. However, in standard Fermi shock acceleration, a substantial fraction of the swept-up particles do not enter the acceleration process at all. Additionally, if acceleration is efficient, then the nonlinear back-reaction of accelerated particles on the shock structure modifies the shape of the nonthermal tail of the particle spectra. Both of these modifications to the standard synchrotron afterglow impact the luminosity, spectra, and temporal variation of the afterglow. To examine the effects of including thermal particles and nonlinear particle acceleration on afterglow emission, we follow a hydrodynamical model for an afterglow jet and simulate acceleration at numerous points during the evolution. When thermal particles are included, we find that the electron population is at no time well fitted by a single power law, though the highest-energy electrons are; if the acceleration is efficient, then the power-law region is even smaller. Our model predicts hard-soft-hard spectral evolution at X-ray energies, as well as an uncoupled X-ray and optical light curve. Additionally, we show that including emission from thermal particles has drastic effects (increases by factors of 100 and 30, respectively) on the observed flux at optical and GeV energies. This enhancement of GeV emission makes afterglow detections by future gamma-ray observatories, such as CTA, very likely.}, language = {en} } @article{PrattBusseMuelleretal.2017, author = {Pratt, Jane and Busse, Angela and Mueller, W-C and Watkins, Nikolas W. and Chapman, Sandra C.}, title = {Extreme-value statistics from Lagrangian convex hull analysis for homogeneous turbulent Boussinesq convection and MHD convection}, series = {New journal of physics : the open-access journal for physics}, volume = {19}, journal = {New journal of physics : the open-access journal for physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/aa6fe8}, pages = {18}, year = {2017}, abstract = {We investigate the utility of the convex hull of many Lagrangian tracers to analyze transport properties of turbulent flows with different anisotropy. In direct numerical simulations of statistically homogeneous and stationary Navier-Stokes turbulence, neutral fluid Boussinesq convection, and MHD Boussinesq convection a comparison with Lagrangian pair dispersion shows that convex hull statistics capture the asymptotic dispersive behavior of a large group of passive tracer particles. Moreover, convex hull analysis provides additional information on the sub-ensemble of tracers that on average disperse most efficiently in the form of extreme value statistics and flow anisotropy via the geometric properties of the convex hulls. We use the convex hull surface geometry to examine the anisotropy that occurs in turbulent convection. Applying extreme value theory, we show that the maximal square extensions of convex hull vertices are well described by a classic extreme value distribution, the Gumbel distribution. During turbulent convection, intermittent convective plumes grow and accelerate the dispersion of Lagrangian tracers. Convex hull analysis yields information that supplements standard Lagrangian analysis of coherent turbulent structures and their influence on the global statistics of the flow.}, language = {en} } @article{KobzarNiemiecPohletal.2017, author = {Kobzar, Oleh and Niemiec, Jacek and Pohl, Martin and Bohdan, Artem}, title = {Spatio-temporal evolution of the non-resonant instability in shock precursors of young supernova remnants}, series = {Monthly notices of the Royal Astronomical Society}, volume = {469}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, organization = {ANTARES Collaboration;H E S S Collaboration}, issn = {0035-8711}, doi = {10.1093/mnras/stx1201}, pages = {4985 -- 4998}, year = {2017}, abstract = {A non-resonant cosmic ray (CR) current-driven instability may operate in the shock precursors of young supernova remnants and be responsible for magnetic-field amplification, plasma heating and turbulence. Earlier simulations demonstrated magnetic-field amplification, and in kinetic studies a reduction of the relative drift between CRs and thermal plasma was observed as backreaction. However, all published simulations used periodic boundary conditions, which do not account for mass conservation in decelerating flows and only allow the temporal development to be studied. Here we report results of fully kinetic particle-in-cell simulations with open boundaries that permit inflow of plasma on one side of the simulation box and outflow at the other end, hence allowing an investigation of both the temporal and the spatial development of the instability. Magnetic-field amplification proceeds as in studies with periodic boundaries and, observed here for the first time, the reduction of relative drifts causes the formation of a shock-like compression structure at which a fraction of the plasma ions are reflected. Turbulent electric field generated by the non-resonant instability inelastically scatters CRs, modifying and anisotropizing their energy distribution. Spatial CR scattering is compatible with Bohm diffusion. Electromagnetic turbulence leads to significant non-adiabatic heating of the background plasma maintaining bulk equipartition between ions and electrons. The highest temperatures are reached at sites of large-amplitude electrostatic fields. Ion spectra show supra-thermal tails resulting from stochastic scattering in the turbulent electric field. Together, these modifications in the plasma flow will affect the properties of the shock and particle acceleration there.}, language = {en} } @article{VafinRiazantsevaYoon2017, author = {Vafin, Sergei and Riazantseva, M. and Yoon, P. H.}, title = {Kinetic Features in the Ion Flux Spectrum}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {850}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aa9519}, pages = {7}, year = {2017}, abstract = {An interesting feature of solar wind fluctuations is the occasional presence of a well-pronounced peak near the spectral knee. These peaks are well investigated in the context of magnetic field fluctuations in the magnetosheath and they are typically related to kinetic plasma instabilities. Recently, similar peaks were observed in the spectrum of ion flux fluctuations of the solar wind and magnetosheath. In this paper, we propose a simple analytical model to describe such peaks in the ion flux spectrum based on the linear theory of plasma fluctuations. We compare our predictions with a sample observation in the solar wind. For the given observation, the peak requires similar to 10 minutes to grow up to the observed level that agrees with the quasi-linear relaxation time. Moreover, our model well reproduces the form of the measured peak in the ion flux spectrum. The observed lifetime of the peak is about 50 minutes, which is relatively close to the nonlinear Landau damping time of 30-40 minutes. Overall, our model proposes a plausible scenario explaining the observation.}, language = {en} }