@article{WestburyDalerumbNorenetal.2017, author = {Westbury, Michael V. and Dalerumb, Fredrik and Noren, Karin and Hofreiter, Michael}, title = {Complete mitochondrial genome of a bat-eared fox (Otocyon megalotis), along with phylogenetic considerations}, series = {Mitochondrial DNA. Part B}, volume = {2}, journal = {Mitochondrial DNA. Part B}, number = {1}, publisher = {Routledge, Taylor \& Francis Group}, address = {London}, issn = {2380-2359}, doi = {10.1080/23802359.2017.1331325}, pages = {298 -- 299}, year = {2017}, abstract = {The bat-eared fox, Otocyon megalotis, is the only member of its genus and is thought to occupy a basal position within the dog family. These factors can lead to challenges in complete mitochondrial reconstructions and accurate phylogenetic positioning. Here, we present the first complete mitochondrial genome of the bat-eared fox recovered using shotgun sequencing and iterative mapping to three distantly related species. Phylogenetic analyses placed the bat-eared fox basal in the Canidae family within the clade including true foxes (Vulpes) and the raccoon dog (Nyctereutes) with high support values. This position is in good agreement with previously published results based on short fragments of mitochondrial and nuclear genes, therefore adding more support to the basal positioning of the bat-eared fox within Canidae.}, language = {en} } @article{KehlmaierBarlowHastingsetal.2017, author = {Kehlmaier, Christian and Barlow, Axel and Hastings, Alexander K. and Vamberger, Melita and Paijmans, Johanna L. A. and Steadman, David W. and Albury, Nancy A. and Franz, Richard and Hofreiter, Michael and Fritz, Uwe}, title = {Tropical ancient DNA reveals relationships of the extinct bahamian giant tortoise Chelonoidis alburyorum}, series = {Proceedings of the Royal Society of London : Series B, Biological sciences}, volume = {284}, journal = {Proceedings of the Royal Society of London : Series B, Biological sciences}, publisher = {The Royal Society}, address = {London}, issn = {0962-8452}, doi = {10.1098/rspb.2016.2235}, pages = {8}, year = {2017}, abstract = {Ancient DNA of extinct species from the Pleistocene and Holocene has provided valuable evolutionary insights. However, these are largely restricted to mammals and high latitudes because DNA preservation in warm climates is typically poor. In the tropics and subtropics, non-avian reptiles constitute a significant part of the fauna and little is known about the genetics of the many extinct reptiles from tropical islands. We have reconstructed the near-complete mitochondrial genome of an extinct giant tortoise from the Bahamas (Chelonoidis alburyorum) using an approximately 1000-year-old humerus from a water-filled sinkhole (blue hole) on Great Abaco Island. Phylogenetic and molecular clock analyses place this extinct species as closely related to Galapagos (C. niger complex) and Chaco tortoises (C. chilensis), and provide evidence for repeated overseas dispersal in this tortoise group. The ancestors of extant Chelonoidis species arrived in South America from Africa only after the opening of the Atlantic Ocean and dispersed from there to the Caribbean and the Galapagos Islands. Our results also suggest that the anoxic, thermally buffered environment of blue holes may enhance DNA preservation, and thus are opening a window for better understanding evolution and population history of extinct tropical species, which would likely still exist without human impact.}, language = {en} } @article{SiskaJonesJeonetal.2017, author = {Siska, Veronika and Jones, Eppie Ruth and Jeon, Sungwon and Bhak, Youngjune and Kim, Hak-Min and Cho, Yun Sung and Kim, Hyunho and Lee, Kyusang and Veselovskaya, Elizaveta and Balueva, Tatiana and Gallego-Llorente, Marcos and Hofreiter, Michael and Bradley, Daniel G. and Eriksson, Anders and Pinhasi, Ron and Bhak, Jong and Manica, Andrea}, title = {Genome-wide data from two early Neolithic East Asian individuals dating to 7700 years ago}, series = {Science Advances}, volume = {3}, journal = {Science Advances}, number = {2}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {2375-2548}, doi = {10.1126/sciadv.1601877}, pages = {10}, year = {2017}, abstract = {Ancient genomes have revolutionized our understanding of Holocene prehistory and, particularly, the Neolithic transition in western Eurasia. In contrast, East Asia has so far received little attention, despite representing a core region at which the Neolithic transition took place independently ~3 millennia after its onset in the Near East. We report genome-wide data from two hunter-gatherers from Devil's Gate, an early Neolithic cave site (dated to ~7.7 thousand years ago) located in East Asia, on the border between Russia and Korea. Both of these individuals are genetically most similar to geographically close modern populations from the Amur Basin, all speaking Tungusic languages, and, in particular, to the Ulchi. The similarity to nearby modern populations and the low levels of additional genetic material in the Ulchi imply a high level of genetic continuity in this region during the Holocene, a pattern that markedly contrasts with that reported for Europe.}, language = {en} } @article{MohandesanSpellerPetersetal.2017, author = {Mohandesan, Elmira and Speller, Camilla F. and Peters, Joris and Uerpmann, Hans-Peter and Uerpmann, Margarethe and De Cupere, Bea and Hofreiter, Michael and Burger, Pamela A.}, title = {Combined hybridization capture and shotgun sequencing for ancient DNA analysis of extinct wild and domestic dromedary camel}, series = {Molecular ecology resources}, volume = {17}, journal = {Molecular ecology resources}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {1755-098X}, doi = {10.1111/1755-0998.12551}, pages = {300 -- 313}, year = {2017}, abstract = {The performance of hybridization capture combined with next-generation sequencing (NGS) has seen limited investigation with samples from hot and arid regions until now. We applied hybridization capture and shotgun sequencing to recover DNA sequences from bone specimens of ancient-domestic dromedary (Camelus dromedarius) and its extinct ancestor, the wild dromedary from Jordan, Syria, Turkey and the Arabian Peninsula, respectively. Our results show that hybridization capture increased the percentage of mitochondrial DNA (mtDNA) recovery by an average 187-fold and in some cases yielded virtually complete mitochondrial (mt) genomes at multifold coverage in a single capture experiment. Furthermore, we tested the effect of hybridization temperature and time by using a touchdown approach on a limited number of samples. We observed no significant difference in the number of unique dromedary mtDNA reads retrieved with the standard capture compared to the touchdown method. In total, we obtained 14 partial mitochondrial genomes from ancient-domestic dromedaries with 17-95\% length coverage and 1.27-47.1-fold read depths for the covered regions. Using whole-genome shotgun sequencing, we successfully recovered endogenous dromedary nuclear DNA (nuDNA) from domestic and wild dromedary specimens with 1-1.06-fold read depths for covered regions. Our results highlight that despite recent methodological advances, obtaining ancient DNA (aDNA) from specimens recovered from hot, arid environments is still problematic. Hybridization protocols require specific optimization, and samples at the limit of DNA preservation need multiple replications of DNA extraction and hybridization capture as has been shown previously for Middle Pleistocene specimens.}, language = {en} } @article{ChangKnappEnketal.2017, author = {Chang, Dan and Knapp, Michael and Enk, Jacob and Lippold, Sebastian and Kircher, Martin and Lister, Adrian M. and MacPhee, Ross D. E. and Widga, Christopher and Czechowski, Paul and Sommer, Robert and Hodges, Emily and St{\"u}mpel, Nikolaus and Barnes, Ian and Dal{\´e}n, Love and Derevianko, Anatoly and Germonpr{\´e}, Mietje and Hillebrand-Voiculescu, Alexandra and Constantin, Silviu and Kuznetsova, Tatyana and Mol, Dick and Rathgeber, Thomas and Rosendahl, Wilfried and Tikhonov, Alexey N. and Willerslev, Eske and Hannon, Greg and Lalueza i Fox, Carles and Joger, Ulrich and Poinar, Hendrik N. and Hofreiter, Michael and Shapiro, Beth}, title = {The evolutionary and phylogeographic history of woolly mammoths}, series = {Scientific reports}, volume = {7}, journal = {Scientific reports}, publisher = {Nature Publishing Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep44585}, pages = {10}, year = {2017}, abstract = {Near the end of the Pleistocene epoch, populations of the woolly mammoth (Mammuthus primigenius) were distributed across parts of three continents, from western Europe and northern Asia through Beringia to the Atlantic seaboard of North America. Nonetheless, questions about the connectivity and temporal continuity of mammoth populations and species remain unanswered. We use a combination of targeted enrichment and high-throughput sequencing to assemble and interpret a data set of 143 mammoth mitochondrial genomes, sampled from fossils recovered from across their Holarctic range. Our dataset includes 54 previously unpublished mitochondrial genomes and significantly increases the coverage of the Eurasian range of the species. The resulting global phylogeny confirms that the Late Pleistocene mammoth population comprised three distinct mitochondrial lineages that began to diverge ~1.0-2.0 million years ago (Ma). We also find that mammoth mitochondrial lineages were strongly geographically partitioned throughout the Pleistocene. In combination, our genetic results and the pattern of morphological variation in time and space suggest that male-mediated gene flow, rather than large-scale dispersals, was important in the Pleistocene evolutionary history of mammoths.}, language = {en} } @article{ThomasCarvalhoHaileetal.2017, author = {Thomas, Jessica E. and Carvalho, Gary R. and Haile, James and Martin, Michael D. and Castruita, Jose A. Samaniego and Niemann, Jonas and Sinding, Mikkel-Holger S. and Sandoval-Velasco, Marcela and Rawlence, Nicolas J. and Fuller, Errol and Fjeldsa, Jon and Hofreiter, Michael and Stewart, John R. and Gilbert, M. Thomas P. and Knapp, Michael}, title = {An ‛Aukward' tale}, series = {Genes}, volume = {8}, journal = {Genes}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2073-4425}, doi = {10.3390/genes8060164}, pages = {164}, year = {2017}, abstract = {One hundred and seventy-three years ago, the last two Great Auks, Pinguinus impennis, ever reliably seen were killed. Their internal organs can be found in the collections of the Natural History Museum of Denmark, but the location of their skins has remained a mystery. In 1999, Great Auk expert Errol Fuller proposed a list of five potential candidate skins in museums around the world. Here we take a palaeogenomic approach to test which—if any—of Fuller's candidate skins likely belong to either of the two birds. Using mitochondrial genomes from the five candidate birds (housed in museums in Bremen, Brussels, Kiel, Los Angeles, and Oldenburg) and the organs of the last two known individuals, we partially solve the mystery that has been on Great Auk scholars' minds for generations and make new suggestions as to the whereabouts of the still-missing skin from these two birds.}, language = {en} } @article{DolotovskayaBordalloHausetal.2017, author = {Dolotovskaya, Sofya and Bordallo, Juan Torroba and Haus, Tanja and Noll, Angela and Hofreiter, Michael and Zinner, Dietmar and Roos, Christian}, title = {Comparing mitogenomic timetrees for two African savannah primate genera (Chlorocebus and Papio)}, series = {Zoological Journal of the Linnean Society}, volume = {181}, journal = {Zoological Journal of the Linnean Society}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0024-4082}, doi = {10.1093/zoolinnean/zlx001}, pages = {471 -- 483}, year = {2017}, abstract = {Complete mitochondrial (mtDNA) genomes have proved to be useful in reconstructing primate phylogenies with higher resolution and confidence compared to reconstructions based on partial mtDNA sequences. Here, we analyse complete mtDNA genomes of African green monkeys (genus Chlorocebus), a widely distributed primate genus in Africa representing an interesting phylogeographical model for the evolution of savannah species. Previous studies on partial mtDNA sequences revealed nine major clades, suggesting several cases of para- and polyphyly among Chlorocebus species. However, in these studies, phylogenetic relationships among several clades were not resolved, and divergence times were not estimated. We analysed complete mtDNA genomes for ten Chlorocebus samples representing major mtDNA clades to find stronger statistical support in the phylogenetic reconstruction than in the previous studies and to estimate divergence times. Our results confirmed para- and polyphyletic relationships of most Chlorocebus species, while the support for the phylogenetic relationships between the mtDNA clades increased compared to the previous studies. Our results indicate an initial west-east division in the northern part of the Chlorocebus range with subsequent divergence into north-eastern and southern clades. This phylogeographic scenario contrasts with that for another widespread African savannah primate genus, the baboons (Papio), for which a dispersal from southern Africa into East and West Africa was suggested.}, language = {en} } @article{LibradoGambaGaunitzetal.2017, author = {Librado, Pablo and Gamba, Cristina and Gaunitz, Charleen and Sarkissian, Clio Der and Pruvost, Melanie and Albrechtsen, Anders and Fages, Antoine and Khan, Naveed and Schubert, Mikkel and Jagannathan, Vidhya and Serres-Armero, Aitor and Kuderna, Lukas F. K. and Povolotskaya, Inna S. and Seguin-Orlando, Andaine and Lepetz, Sebastien and Neuditschko, Markus and Theves, Catherine and Alquraishi, Saleh A. and Alfarhan, Ahmed H. and Al-Rasheid, Khaled A. S. and Rieder, Stefan and Samashev, Zainolla and Francfort, Henri-Paul and Benecke, Norbert and Hofreiter, Michael and Ludwig, Arne and Keyser, Christine and Marques-Bonet, Tomas and Ludes, Bertrand and Crubezy, Eric and Leeb, Tosso and Willerslev, Eske and Orlando, Ludovic}, title = {Ancient genomic changes associated with domestication of the horse}, series = {Science}, volume = {356}, journal = {Science}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.aam5298}, pages = {442 -- 445}, year = {2017}, abstract = {The genomic changes underlying both early and late stages of horse domestication remain largely unknown. We examined the genomes of 14 early domestic horses from the Bronze and Iron Ages, dating to between similar to 4.1 and 2.3 thousand years before present. We find early domestication selection patterns supporting the neural crest hypothesis, which provides a unified developmental origin for common domestic traits. Within the past 2.3 thousand years, horses lost genetic diversity and archaic DNA tracts introgressed from a now-extinct lineage. They accumulated deleterious mutations later than expected under the cost-of-domestication hypothesis, probably because of breeding from limited numbers of stallions. We also reveal that Iron Age Scythian steppe nomads implemented breeding strategies involving no detectable inbreeding and selection for coat-color variation and robust forelimbs.}, language = {en} } @article{ElsnerHofreiterSchibleretal.2017, author = {Elsner, Julia and Hofreiter, Michael and Schibler, Joerg and Schlumbaum, Angela}, title = {Ancient mtDNA diversity reveals specific population development of wild horses in Switzerland after the Last Glacial Maximum}, series = {PLoS one}, volume = {12}, journal = {PLoS one}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0177458}, pages = {17246 -- 17256}, year = {2017}, language = {en} } @article{MeyerPalkopoulouBalekaetal.2017, author = {Meyer, Matthias and Palkopoulou, Eleftheria and Baleka, Sina Isabelle and Stiller, Mathias and Penkman, Kirsty E. H. and Alt, Kurt W. and Ishida, Yasuko and Mania, Dietrich and Mallick, Swapan and Meijer, Tom and Meller, Harald and Nagel, Sarah and Nickel, Birgit and Ostritz, Sven and Rohland, Nadin and Schauer, Karol and Schueler, Tim and Roca, Alfred L. and Reich, David and Shapiro, Beth and Hofreiter, Michael}, title = {Palaeogenomes of Eurasian straight-tusked elephants challenge the current view of elephant evolution}, series = {eLife}, volume = {6}, journal = {eLife}, publisher = {eLife Sciences Publications}, address = {Cambridge}, issn = {2050-084X}, doi = {10.7554/eLife.25413}, pages = {14}, year = {2017}, abstract = {The straight-tusked elephants Palaeoloxodon spp. were widespread across Eurasia during the Pleistocene. Phylogenetic reconstructions using morphological traits have grouped them with Asian elephants (Elephas maximus), and many paleontologists place Palaeoloxodon within Elephas. Here, we report the recovery of full mitochondrial genomes from four and partial nuclear genomes from two P. antiquus fossils. These fossils were collected at two sites in Germany, Neumark-Nord and Weimar-Ehringsdorf, and likely date to interglacial periods similar to 120 and similar to 244 thousand years ago, respectively. Unexpectedly, nuclear and mitochondrial DNA analyses suggest that P. antiquus was a close relative of extant African forest elephants (Loxodonta cyclotis). Species previously referred to Palaeoloxodon are thus most parsimoniously explained as having diverged from the lineage of Loxodonta, indicating that Loxodonta has not been constrained to Africa. Our results demonstrate that the current picture of elephant evolution is in need of substantial revision.}, language = {en} }