@techreport{ŠedovaČizmaziovaCook2021, type = {Working Paper}, author = {Šedov{\´a}, Barbora and Čizmaziov{\´a}, Lucia and Cook, Athene}, title = {A meta-analysis of climate migration literature}, series = {CEPA Discussion Papers}, journal = {CEPA Discussion Papers}, number = {29}, issn = {2628-653X}, doi = {10.25932/publishup-49982}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-499827}, pages = {83}, year = {2021}, abstract = {The large literature that aims to find evidence of climate migration delivers mixed findings. This meta-regression analysis i) summarizes direct links between adverse climatic events and migration, ii) maps patterns of climate migration, and iii) explains the variation in outcomes. Using a set of limited dependent variable models, we meta-analyze thus-far the most comprehensive sample of 3,625 estimates from 116 original studies and produce novel insights on climate migration. We find that extremely high temperatures and drying conditions increase migration. We do not find a significant effect of sudden-onset events. Climate migration is most likely to emerge due to contemporaneous events, to originate in rural areas and to take place in middle-income countries, internally, to cities. The likelihood to become trapped in affected areas is higher for women and in low-income countries, particularly in Africa. We uniquely quantify how pitfalls typical for the broader empirical climate impact literature affect climate migration findings. We also find evidence of different publication biases.}, language = {en} } @article{ŠedovaKalkuhl2020, author = {Šedov{\´a}, Barbora and Kalkuhl, Matthias}, title = {Who are the climate migrants and where do they go?}, series = {World development}, volume = {129}, journal = {World development}, publisher = {Elsevier Science}, address = {Amsterdam}, issn = {0305-750X}, doi = {10.1016/j.worlddev.2019.104848}, pages = {19}, year = {2020}, abstract = {In this paper, we move from the large strand of research that looks at evidence of climate migration to the questions: who are the climate migrants? and where do they go? These questions are crucial to design policies that mitigate welfare losses of migration choices due to climate change. We study the direct and heterogeneous associations between weather extremes and migration in rural India. We combine ERAS reanalysis data with the India Human Development Survey household panel and conduct regression analyses by applying linear probability and multinomial logit models. This enables us to establish a causal relationship between temperature and precipitation anomalies and overall migration as well as migration by destination. We show that adverse weather shocks decrease rural-rural and international migration and push people into cities in different, presumably more prosperous states. A series of positive weather shocks, however, facilitates international migration and migration to cities within the same state. Further, our results indicate that in contrast to other migrants, climate migrants are likely to be from the lower end of the skill distribution and from households strongly dependent on agricultural production. We estimate that approximately 8\% of all rural-urban moves between 2005 and 2012 can be attributed to weather. This figure might increase as a consequence of climate change. Thus, a key policy recommendation is to take steps to facilitate integration of less educated migrants into the urban labor market.}, language = {en} } @phdthesis{Šedova2022, author = {Šedov{\´a}, Barbora}, title = {Heterogeneous effects of weather and climate change on human migration}, doi = {10.25932/publishup-53673}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-536733}, school = {Universit{\"a}t Potsdam}, pages = {xix, 284}, year = {2022}, abstract = {While estimated numbers of past and future climate migrants are alarming, the growing empirical evidence suggests that the association between adverse climate-related events and migration is not universally positive. This dissertation seeks to advance our understanding of when and how climate migration emerges by analyzing heterogeneous climatic influences on migration in low- and middle-income countries. To this end, it draws on established economic theories of migration, datasets from physical and social sciences, causal inference techniques and approaches from systematic literature review. In three of its five chapters, I estimate causal effects of processes of climate change on inequality and migration in India and Sub-Saharan Africa. By employing interaction terms and by analyzing sub-samples of data, I explore how these relationships differ for various segments of the population. In the remaining two chapters, I present two systematic literature reviews. First, I undertake a comprehensive meta-regression analysis of the econometric climate migration literature to summarize general climate migration patterns and explain the conflicting findings. Second, motivated by the broad range of approaches in the field, I examine the literature from a methodological perspective to provide best practice guidelines for studying climate migration empirically. Overall, the evidence from this dissertation shows that climatic influences on human migration are highly heterogeneous. Whether adverse climate-related impacts materialize in migration depends on the socio-economic characteristics of the individual households, such as wealth, level of education, agricultural dependence or access to adaptation technologies and insurance. For instance, I show that while adverse climatic shocks are generally associated with an increase in migration in rural India, they reduce migration in the agricultural context of Sub-Saharan Africa, where the average wealth levels are much lower so that households largely cannot afford the upfront costs of moving. I find that unlike local climatic shocks which primarily enhance internal migration to cities and hence accelerate urbanization, shocks transmitted via agricultural producer prices increase migration to neighboring countries, likely due to the simultaneous decrease in real income in nearby urban areas. These findings advance our current understanding by showing when and how economic agents respond to climatic events, thus providing explicit contexts and mechanisms of climate change effects on migration in the future. The resulting collection of findings can guide policy interventions to avoid or mitigate any present and future welfare losses from climate change-related migration choices.}, language = {en} } @phdthesis{Zurell2011, author = {Zurell, Damaris}, title = {Integrating dynamic and statistical modelling approaches in order to improve predictions for scenarios of environmental change}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-56845}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Species respond to environmental change by dynamically adjusting their geographical ranges. Robust predictions of these changes are prerequisites to inform dynamic and sustainable conservation strategies. Correlative species distribution models (SDMs) relate species' occurrence records to prevailing environmental factors to describe the environmental niche. They have been widely applied in global change context as they have comparably low data requirements and allow for rapid assessments of potential future species' distributions. However, due to their static nature, transient responses to environmental change are essentially ignored in SDMs. Furthermore, neither dispersal nor demographic processes and biotic interactions are explicitly incorporated. Therefore, it has often been suggested to link statistical and mechanistic modelling approaches in order to make more realistic predictions of species' distributions for scenarios of environmental change. In this thesis, I present two different ways of such linkage. (i) Mechanistic modelling can act as virtual playground for testing statistical models and allows extensive exploration of specific questions. I promote this 'virtual ecologist' approach as a powerful evaluation framework for testing sampling protocols, analyses and modelling tools. Also, I employ such an approach to systematically assess the effects of transient dynamics and ecological properties and processes on the prediction accuracy of SDMs for climate change projections. That way, relevant mechanisms are identified that shape the species' response to altered environmental conditions and which should hence be considered when trying to project species' distribution through time. (ii) I supplement SDM projections of potential future habitat for black grouse in Switzerland with an individual-based population model. By explicitly considering complex interactions between habitat availability and demographic processes, this allows for a more direct assessment of expected population response to environmental change and associated extinction risks. However, predictions were highly variable across simulations emphasising the need for principal evaluation tools like sensitivity analysis to assess uncertainty and robustness in dynamic range predictions. Furthermore, I identify data coverage of the environmental niche as a likely cause for contrasted range predictions between SDM algorithms. SDMs may fail to make reliable predictions for truncated and edge niches, meaning that portions of the niche are not represented in the data or niche edges coincide with data limits. Overall, my thesis contributes to an improved understanding of uncertainty factors in predictions of range dynamics and presents ways how to deal with these. Finally I provide preliminary guidelines for predictive modelling of dynamic species' response to environmental change, identify key challenges for future research and discuss emerging developments.}, language = {en} } @phdthesis{Wunderling2021, author = {Wunderling, Nico}, title = {Nichtlineare Dynamiken und Interaktionen von Kippelementen im Erdsystem}, doi = {10.25932/publishup-52514}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-525140}, school = {Universit{\"a}t Potsdam}, pages = {ix, 303}, year = {2021}, abstract = {With ongoing anthropogenic global warming, some of the most vulnerable components of the Earth system might become unstable and undergo a critical transition. These subsystems are the so-called tipping elements. They are believed to exhibit threshold behaviour and would, if triggered, result in severe consequences for the biosphere and human societies. Furthermore, it has been shown that climate tipping elements are not isolated entities, but interact across the entire Earth system. Therefore, this thesis aims at mapping out the potential for tipping events and feedbacks in the Earth system mainly by the use of complex dynamical systems and network science approaches, but partially also by more detailed process-based models of the Earth system. In the first part of this thesis, the theoretical foundations are laid by the investigation of networks of interacting tipping elements. For this purpose, the conditions for the emergence of global cascades are analysed against the structure of paradigmatic network types such as Erd{\"o}s-R{\´e}nyi, Barab{\´a}si-Albert, Watts-Strogatz and explicitly spatially embedded networks. Furthermore, micro-scale structures are detected that are decisive for the transition of local to global cascades. These so-called motifs link the micro- to the macro-scale in the network of tipping elements. Alongside a model description paper, all these results are entered into the Python software package PyCascades, which is publicly available on github. In the second part of this dissertation, the tipping element framework is first applied to components of the Earth system such as the cryosphere and to parts of the biosphere. Afterwards it is applied to a set of interacting climate tipping elements on a global scale. Using the Earth system Model of Intermediate Complexity (EMIC) CLIMBER-2, the temperature feedbacks are quantified, which would arise if some of the large cryosphere elements disintegrate over a long span of time. The cryosphere components that are investigated are the Arctic summer sea ice, the mountain glaciers, the Greenland and the West Antarctic Ice Sheets. The committed temperature increase, in case the ice masses disintegrate, is on the order of an additional half a degree on a global average (0.39-0.46 °C), while local to regional additional temperature increases can exceed 5 °C. This means that, once tipping has begun, additional reinforcing feedbacks are able to increase global warming and with that the risk of further tipping events. This is also the case in the Amazon rainforest, whose parts are dependent on each other via the so-called moisture-recycling feedback. In this thesis, the importance of drought-induced tipping events in the Amazon rainforest is investigated in detail. Despite the Amazon rainforest is assumed to be adapted to past environmental conditions, it is found that tipping events sharply increase if the drought conditions become too intense in a too short amount of time, outpacing the adaptive capacity of the Amazon rainforest. In these cases, the frequency of tipping cascades also increases to 50\% (or above) of all tipping events. In the model that was developed in this study, the southeastern region of the Amazon basin is hit hardest by the simulated drought patterns. This is also the region that already nowadays suffers a lot from extensive human-induced changes due to large-scale deforestation, cattle ranching or infrastructure projects. Moreover, on the larger Earth system wide scale, a network of conceptualised climate tipping elements is constructed in this dissertation making use of a large literature review, expert knowledge and topological properties of the tipping elements. In global warming scenarios, tipping cascades are detected even under modest scenarios of climate change, limiting global warming to 2 °C above pre-industrial levels. In addition, the structural roles of the climate tipping elements in the network are revealed. While the large ice sheets on Greenland and Antarctica are the initiators of tipping cascades, the Atlantic Meridional Overturning Circulation (AMOC) acts as the transmitter of cascades. Furthermore, in our conceptual climate tipping element model, it is found that the ice sheets are of particular importance for the stability of the entire system of investigated climate tipping elements. In the last part of this thesis, the results from the temperature feedback study with the EMIC CLIMBER-2 are combined with the conceptual model of climate tipping elements. There, it is observed that the likelihood of further tipping events slightly increases due to the temperature feedbacks even if no further CO\$_2\$ would be added to the atmosphere. Although the developed network model is of conceptual nature, it is possible with this work for the first time to quantify the risk of tipping events between interacting components of the Earth system under global warming scenarios, by allowing for dynamic temperature feedbacks at the same time.}, language = {en} } @phdthesis{Wulf2011, author = {Wulf, Hendrik}, title = {Seasonal precipitation, river discharge, and sediment flux in the western Himalaya}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-57905}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Rainfall, snow-, and glacial melt throughout the Himalaya control river discharge, which is vital for maintaining agriculture, drinking water and hydropower generation. However, the spatiotemporal contribution of these discharge components to Himalayan rivers is not well understood, mainly because of the scarcity of ground-based observations. Consequently, there is also little known about the triggers and sources of peak sediment flux events, which account for extensive hydropower reservoir filling and turbine abrasion. We therefore lack basic information on the distribution of water resources and controls of erosion processes. In this thesis, I employ various methods to assess and quantify general characteristics of and links between precipitation, river discharge, and sediment flux in the Sutlej Valley. First, I analyze daily precipitation data (1998-2007) from 80 weather stations in the western Himalaya, to decipher the distribution of rain- and snowfall. Rainfall magnitude frequency analyses indicate that 40\% of the summer rainfall budget is attributed to monsoonal rainstorms, which show higher variability in the orogenic interior than in frontal regions. Combined analysis of rainstorms and sediment flux data of a major Sutlej River tributary indicate that monsoonal rainfall has a first order control on erosion processes in the orogenic interior, despite the dominance of snowfall in this region. Second, I examine the contribution of rainfall, snow and glacial melt to river discharge in the Sutlej Valley (s55,000 km2), based on a distributed hydrological model, which covers the period 2000-2008. To achieve high spatial and daily resolution despite limited ground-based observations the hydrological model is forced by daily remote sensing data, which I adjusted and calibrated with ground station data. The calibration shows that the Tropical Rainfall Measuring Mission (TRMM) 3B42 rainfall product systematically overestimates rainfall in semi-arid and arid regions, increasing with aridity. The model results indicate that snowmelt-derived discharge (74\%) is most important during the pre-monsoon season (April to June) whereas rainfall (56\%) and glacial melt (17\%) dominate the monsoon season (July-September). Therefore, climate change most likely causes a reduction in river discharge during the pre-monsoon season, which especially affects the orogenic interior. Third, I investigate the controls on suspended sediment flux in different parts of the Sutlej catchments, based on daily gauging data from the past decade. In conjunction with meteorological data, earthquake records, and rock strength measurements I find that rainstorms are the most frequent trigger of high-discharge events with peaks in suspended sediment concentrations (SSC) that account for the bulk of the suspended sediment flux. The suspended sediment flux increases downstream, mainly due to increases in runoff. Pronounced erosion along the Himalayan Front occurs throughout the monsoon season, whereas efficient erosion of the orogenic interior is confined to single extreme events. The results of this thesis highlight the importance of snow and glacially derived melt waters in the western Himalaya, where extensive regions receive only limited amounts of monsoonal rainfall. These regions are therefore particularly susceptible to global warming with major implications on the hydrological cycle. However, the sediment discharge data show that infrequent monsoonal rainstorms that pass the orographic barrier of the Higher Himalaya are still the primary trigger of the highest-impact erosion events, despite being subordinate to snow and glacially-derived discharge. These findings may help to predict peak sediment flux events and could underpin the strategic development of preventative measures for hydropower infrastructures.}, language = {en} } @article{WolfPhamMatthewsetal.2020, author = {Wolf, Sabina and Pham, My and Matthews, Nathanial and Bubeck, Philip}, title = {Understanding the implementation gap}, series = {Climate \& development}, volume = {13}, journal = {Climate \& development}, number = {1}, publisher = {Taylor \& Francis LTD}, address = {Abingdon}, issn = {1756-5529}, doi = {10.1080/17565529.2020.1724068}, pages = {81 -- 94}, year = {2020}, abstract = {In recent years, nature-based solutions are receiving increasing attention in the field of disaster risk reduction and climate change adaptation as inclusive, no regret approaches. Ecosystem-based adaptation (EbA) can mitigate the impacts of climate change, build resilience and tackle environmental degradation thereby supporting the targets set by the 2030 Agenda, the Paris Agreement and the Sendai Framework. Despite these benefits, EbA is still rarely implemented in practice. To better understand the barriers to implementation, this research examines policy-makers' perceptions of EbA, using an extended version of Protection Motivation Theory as an analytical framework. Through semi-structured interviews with policy-makers at regional and provincial level in Central Vietnam, it was found that EbA is generally considered a promising response option, mainly due to its multiple ecosystem-service benefits. The demand for EbA measures was largely driven by the perceived consequences of natural hazards and climate change. Insufficient perceived response efficacy and time-lags in effectiveness for disaster risk reduction were identified as key impediments for implementation. Pilot projects and capacity building on EbA are important means to overcome these perceptual barriers. This paper contributes to bridging the knowledge-gap on political decision-making regarding EbA and can, thereby, promote its mainstreaming into policy plans.}, language = {en} } @article{WischnewskiKramerKongetal.2011, author = {Wischnewski, Juliane and Kramer, Annette and Kong, Zhaochen and Mackay, Anson W. and Simpson, Gavin L. and Mischke, Steffen and Herzschuh, Ulrike}, title = {Terrestrial and aquatic responses to climate change and human impact on the southeastern Tibetan Plateau during the past two centuries}, series = {Global change biology}, volume = {17}, journal = {Global change biology}, number = {11}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {1354-1013}, doi = {10.1111/j.1365-2486.2011.02474.x}, pages = {3376 -- 3391}, year = {2011}, abstract = {Rapid population growth and economic development have led to increased anthropogenic pressures on the Tibetan Plateau, causing significant land cover changes with potentially severe ecological consequences. To assess whether or not these pressures are also affecting the remote montane-boreal lakes on the SE Tibetan Plateau, fossil pollen and diatom data from two lakes were synthesized. The interplay of aquatic and terrestrial ecosystem response was explored in respect to climate variability and human activity over the past 200 years. Nonmetric multidimensional scaling and Procrustes rotation analysis were undertaken to determine whether pollen and diatom responses in each lake were similar and synchronous. Detrended canonical correspondence analysis was used to develop quantitative estimates of compositional species turnover. Despite instrumental evidence of significant climatic warming on the southeastern Plateau, the pollen and diatom records indicate very stable species composition throughout their profiles and show only very subtle responses to environmental changes over the past 200 years. The compositional species turnover (0.36-0.94 SD) is relatively low in comparison to the species reorganizations known from the periods during the mid-and early-Holocene (0.64-1.61 SD) on the SE Plateau, and also in comparison to turnover rates of sediment records from climate-sensitive regions in the circum arctic. Our results indicate that climatically induced ecological thresholds are not yet crossed, but that human activity has an increasing influence, particularly on the terrestrial ecosystem in our study area. Synergistic processes of post-Little Ice Age warming, 20th century climate warming and extensive reforestations since the 19th century have initiated a change from natural oak-pine forests to seminatural, likely less resilient pine-oak forests. Further warming and anthropogenic disturbances would possibly exceed the ecological threshold of these ecosystems and lead to severe ecological consequences.}, language = {en} } @phdthesis{WindirschWoiwode2024, author = {Windirsch-Woiwode, Torben}, title = {Permafrost carbon stabilisation by recreating a herbivore-driven ecosystem}, doi = {10.25932/publishup-62424}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-624240}, school = {Universit{\"a}t Potsdam}, pages = {X, 104, A-57}, year = {2024}, abstract = {With Arctic ground as a huge and temperature-sensitive carbon reservoir, maintaining low ground temperatures and frozen conditions to prevent further carbon emissions that contrib-ute to global climate warming is a key element in humankind's fight to maintain habitable con-ditions on earth. Former studies showed that during the late Pleistocene, Arctic ground condi-tions were generally colder and more stable as the result of an ecosystem dominated by large herbivorous mammals and vast extents of graminoid vegetation - the mammoth steppe. Characterised by high plant productivity (grassland) and low ground insulation due to animal-caused compression and removal of snow, this ecosystem enabled deep permafrost aggrad-ation. Now, with tundra and shrub vegetation common in the terrestrial Arctic, these effects are not in place anymore. However, it appears to be possible to recreate this ecosystem local-ly by artificially increasing animal numbers, and hence keep Arctic ground cold to reduce or-ganic matter decomposition and carbon release into the atmosphere. By measuring thaw depth, total organic carbon and total nitrogen content, stable carbon iso-tope ratio, radiocarbon age, n-alkane and alcohol characteristics and assessing dominant vegetation types along grazing intensity transects in two contrasting Arctic areas, it was found that recreating conditions locally, similar to the mammoth steppe, seems to be possible. For permafrost-affected soil, it was shown that intensive grazing in direct comparison to non-grazed areas reduces active layer depth and leads to higher TOC contents in the active layer soil. For soil only frozen on top in winter, an increase of TOC with grazing intensity could not be found, most likely because of confounding factors such as vertical water and carbon movement, which is not possible with an impermeable layer in permafrost. In both areas, high animal activity led to a vegetation transformation towards species-poor graminoid-dominated landscapes with less shrubs. Lipid biomarker analysis revealed that, even though the available organic material is different between the study areas, in both permafrost-affected and sea-sonally frozen soils the organic material in sites affected by high animal activity was less de-composed than under less intensive grazing pressure. In conclusion, high animal activity af-fects decomposition processes in Arctic soils and the ground thermal regime, visible from reduced active layer depth in permafrost areas. Therefore, grazing management might be utilised to locally stabilise permafrost and reduce Arctic carbon emissions in the future, but is likely not scalable to the entire permafrost region.}, language = {en} } @phdthesis{Willner2018, author = {Willner, Sven N.}, title = {Global economic response to flood damages under climate change}, school = {Universit{\"a}t Potsdam}, pages = {v, 247}, year = {2018}, abstract = {Climate change affects societies across the globe in various ways. In addition to gradual changes in temperature and other climatic variables, global warming is likely to increase intensity and frequency of extreme weather events. Beyond biophysical impacts, these also directly affect societal and economic activity. Additionally, indirect effects can occur; spatially, economic losses can spread along global supply-chains; temporally, climate impacts can change the economic development trajectory of countries. This thesis first examines how climate change alters river flood risk and its local socio-economic implications. Then, it studies the global economic response to river floods in particular, and to climate change in general. Changes in high-end river flood risk are calculated for the next three decades on a global scale with high spatial resolution. In order to account for uncertainties, this assessment makes use of an ensemble of climate and hydrological models as well as a river routing model, that is found to perform well regarding peak river discharge. The results show an increase in high-end flood risk in many parts of the world, which require profound adaptation efforts. This pressure to adapt is measured as the enhancement in protection level necessary to stay at historical high-end risk. In developing countries as well as in industrialized regions, a high pressure to adapt is observed - the former to increase low protection levels, the latter to maintain the low risk levels perceived in the past. Further in this thesis, the global agent-based dynamic supply-chain model acclimate is developed. It models the cascading of indirect losses in the global supply network. As an anomaly model its agents - firms and consumers - maximize their profit locally to respond optimally to local perturbations. Incorporating quantities as well as prices on a daily basis, it is suitable to dynamically resolve the impacts of unanticipated climate extremes. The model is further complemented by a static measure, which captures the inter-dependencies between sectors across regions that are only connected indirectly. These higher-order dependencies are shown to be important for a comprehensive assessment of loss-propagation and overall costs of local disasters. In order to study the economic response to river floods, the acclimate model is driven by flood simulations. Within the next two decades, the increase in direct losses can only partially be compensated by market adjustments, and total losses are projected to increase by 17\% without further adaptation efforts. The US and the EU are both shown to receive indirect losses from China, which is strongly affected directly. However, recent trends in the trade relations leave the EU in a better position to compensate for these losses. Finally, this thesis takes a broader perspective when determining the investment response to the climate change damages employing the integrated assessment model DICE. On an optimal economic development path, the increase in damages is anticipated as emissions and consequently temperatures increase. This leads to a significant devaluation of investment returns and the income losses from climate damages almost double. Overall, the results highlight the need to adapt to extreme weather events - local physical adaptation measures have to be combined with regional and global policy measures to prepare the global supply-chain network to climate change.}, language = {en} }