@misc{OttoMareljaSchoofsetal.2018, author = {Otto, Nils and Marelja, Zvonimir and Schoofs, Andreas and Kranenburg, Holger and Bittern, Jonas and Yildirim, Kerem and Berh, Dimitri and Bethke, Maria and Thomas, Silke and Rode, Sandra and Risse, Benjamin and Jiang, Xiaoyi and Pankratz, Michael and Leimk{\"u}hler, Silke and Kl{\"a}mbt, Christian}, title = {The sulfite oxidase Shopper controls neuronal activity by regulating glutamate homeostasis in Drosophila ensheathing glia}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {975}, issn = {1866-8372}, doi = {10.25932/publishup-42620}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-426205}, pages = {14}, year = {2018}, abstract = {Specialized glial subtypes provide support to developing and functioning neural networks. Astrocytes modulate information processing by neurotransmitter recycling and release of neuromodulatory substances, whereas ensheathing glial cells have not been associated with neuromodulatory functions yet. To decipher a possible role of ensheathing glia in neuronal information processing, we screened for glial genes required in the Drosophila central nervous system for normal locomotor behavior. Shopper encodes a mitochondrial sulfite oxidase that is specifically required in ensheathing glia to regulate head bending and peristalsis. shopper mutants show elevated sulfite levels affecting the glutamate homeostasis which then act on neuronal network function. Interestingly, human patients lacking the Shopper homolog SUOX develop neurological symptoms, including seizures. Given an enhanced expression of SUOX by oligodendrocytes, our findings might indicate that in both invertebrates and vertebrates more than one glial cell type may be involved in modulating neuronal activity.}, language = {en} } @article{ScheinerTotevaReimetal.2014, author = {Scheiner, Ricarda and Toteva, Anna and Reim, Tina and Sovik, Eirik and Barron, Andrew B.}, title = {Differences in the phototaxis of pollen and nectar foraging honey bees are related to their octopamine brain titers}, series = {Frontiers in physiology}, volume = {5}, journal = {Frontiers in physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2014.00116}, pages = {8}, year = {2014}, abstract = {The biogenic amine octopamine is an important neuromodulator, neurohormone and neurotransmitter in insects. We here investigate the role of octopamine signaling in honey bee phototaxis. Our results show that groups of bees differ naturally in their phototaxis. Pollen forgers display a lower light responsiveness than nectar foragers. The lower phototaxis of pollen foragers coincides with higher octopamine titers in the optic lobes but is independent of octopamine receptor gene expression. Increasing octopamine brain titers reduces responsiveness to light, while tyramine application enhances phototaxis. These findings suggest an involvement of octopamine signaling in honey bee phototaxis and possibly division of labor, which is hypothesized to be based on individual differences in sensory responsiveness.}, language = {en} }