@article{MenonLevermannScheweetal.2013, author = {Menon, Arathy and Levermann, Anders and Schewe, Jacob and Lehmann, J. and Frieler, Katja}, title = {Consistent increase in Indian monsoon rainfall and its variability across CMIP-5 models}, series = {Earth system dynamics}, volume = {4}, journal = {Earth system dynamics}, number = {2}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {2190-4979}, doi = {10.5194/esd-4-287-2013}, pages = {287 -- 300}, year = {2013}, abstract = {The possibility of an impact of global warming on the Indian monsoon is of critical importance for the large population of this region. Future projections within the Coupled Model Intercomparison Project Phase 3 (CMIP-3) showed a wide range of trends with varying magnitude and sign across models. Here the Indian summer monsoon rainfall is evaluated in 20 CMIP-5 models for the period 1850 to 2100. In the new generation of climate models, a consistent increase in seasonal mean rainfall during the summer monsoon periods arises. All models simulate stronger seasonal mean rainfall in the future compared to the historic period under the strongest warming scenario RCP-8.5. Increase in seasonal mean rainfall is the largest for the RCP-8.5 scenario compared to other RCPs. Most of the models show a northward shift in monsoon circulation by the end of the 21st century compared to the historic period under the RCP-8.5 scenario. The interannual variability of the Indian monsoon rainfall also shows a consistent positive trend under unabated global warming. Since both the long-term increase in monsoon rainfall as well as the increase in interannual variability in the future is robust across a wide range of models, some confidence can be attributed to these projected trends.}, language = {en} } @article{MenonLevermannSchewe2013, author = {Menon, Arathy and Levermann, Anders and Schewe, Jacob}, title = {Enhanced future variability during India's rainy season}, series = {Geophysical research letters}, volume = {40}, journal = {Geophysical research letters}, number = {12}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1002/grl.50583}, pages = {3242 -- 3247}, year = {2013}, abstract = {The Indian summer monsoon shapes the livelihood of a large share of the world's population. About 80\% of annual precipitation over India occurs during the monsoon season from June through September. Next to its seasonal mean rainfall, the day-to-day variability is crucial for the risk of flooding, national water supply, and agricultural productivity. Here we show that the latest ensemble of climate model simulations, prepared for the AR-5 of the Intergovernmental Panel on Climate Change, consistently projects significant increases in day-to-day rainfall variability under unmitigated climate change. The relative increase by the period 2071-2100 with respect to the control period 1871-1900 ranges from 13\% to 50\% under the strongest scenario (Representative Concentration Pathways, RCP-8.5), in the 10 models with the most realistic monsoon climatology; and 13\% to 85\% when all the 20 models are considered. The spread across models reduces when variability increase per degree of global warming is considered, which is independent of the scenario in most models, and is 8\% +/- 4\%/K on average. This consistent projection across 20 comprehensive climate models provides confidence in the results and suggests the necessity of profound adaptation measures in the case of unmitigated climate change.}, language = {en} }