TY - JOUR A1 - Virtanen, Janne A1 - Arotcarena, Michel A1 - Heise, Bettina A1 - Ishaya, Sultana A1 - Laschewsky, André A1 - Tenhu, Heikki T1 - Dissolution and aggregation of a poly (NIPA-block-sulfobetaine) copolymer in pure and saline aqueous solutions N2 - Thermal properties of block copolymer, poly(N-isopropyl acrylamide)-block-poly(3-[N-(3-methacrylamido-propyl)- N,N-dimethyl]-ammonio propane sulfonate), PNIPA-b-PSPP have been studied in pure and saline (NaCl) aqueous solutions by dynamic laser light scattering (DLS). The copolymer [Mw(PNIPA) 10800 g/mol and Mw(PSPP) 9700 g/mol] exhibits both an upper (UCST 9 oC) and lower (LCST 32 oC) critical solution temperatures in pure water. The addition of NaCl enhances the solubility of the zwitterionic polymer, PSPP, leading to the disappearance of the UCST. On the other hand, the solubility of PNIPA in water decreases as NaCl is added. At 20 oC the copolymer shows a bimodal size distribution through the NaCl concentration range of 0-0.93 M above a certain limiting polymer concentration. The slow and fast components of the diffusion coefficients of the polymer have been calculated. A gradual addition of salt turns the mutual interactions from zwitterionic attractions between PSPP blocks to hydrophobic attractions between PNIPA blocks. The formation of the aggregates and the aggregate sizes at T < UCST and T > LCST are influenced by polymer and salt concentrations. Below UCST the aggregates in saline polymer solutions are larger than those in pure polymer solutions. Above LCST the aggregate size is determined by the salt concentration. Y1 - 2002 UR - https://publishup.uni-potsdam.de/frontdoor/index/index/docId/16864 ER -