TY - JOUR A1 - Schuster, Valerian A1 - Rybacki, Erik A1 - Bonnelye, Audrey A1 - Herrmann, Johannes A1 - Schleicher, Anja Maria A1 - Dresen, Georg T1 - Experimental deformation of opalinus clay at elevated temperature and pressure conditions T2 - Rock mechanics and rock engineering N2 - The mechanical behavior of the sandy facies of Opalinus Clay (OPA) was investigated in 42 triaxial tests performed on dry samples at unconsolidated, undrained conditions at confining pressures (p(c)) of 50-100 MPa, temperatures (T) between 25 and 200 degrees C and strain rates (epsilon) (over dot ) of 1 x-10(-3)-5 x-10(-6) -s(-1). Using a Paterson-type deformation apparatus, samples oriented at 0 degrees, 45 degrees and 90 degrees to bedding were deformed up to about 15% axial strain. Additionally, the influence of water content, drainage condition and pre-consolidation was investigated at fixed p(c)-T conditions, using dry and re-saturated samples. Deformed samples display brittle to semi-brittle deformation behavior, characterized by cataclastic flow in quartz-rich sandy layers and granular flow in phyllosilicate-rich layers. Samples loaded parallel to bedding are less compliant compared to the other loading directions. With the exception of samples deformed 45 degrees and 90 degrees to bedding at p(c) = 100 MPa, strain is localized in discrete shear zones. Compressive strength (sigma(max)) increases with increasing pc, resulting in an internal friction coefficient of approximate to 0.31 for samples deformed at 45 degrees and 90 degrees to bedding, and approximate to 0.44 for samples deformed parallel to bedding. In contrast, pre-consolidation, drainage condition, T and epsilon(over dot )do not significantly affect deformation behavior of dried samples. However, sigma(max) and Young's modulus (E) decrease substantially with increasing water saturation. Compared to the clay-rich shaly facies of OPA, sandy facies specimens display higher strength sigma(max) and Young's modulus E at similar deformation conditions. Strength and Young's modulus of samples deformed 90 degrees and 45 degrees to bedding are close to the iso-stress Reuss bound, suggesting a strong influence of weak clay-rich layers on the deformation behavior. KW - Clay rock KW - Sandy facies of Opalinus Clay KW - Triaxial deformation experiments KW - Microstructural deformation mechanisms KW - Pressure-temperature and strain rate-dependent mechanical behaviour KW - Anisotropy Y1 - 2021 UR - https://publishup.uni-potsdam.de/frontdoor/index/index/docId/61655 SN - 0723-2632 SN - 1434-453X VL - 54 SP - 4009 EP - 4039 PB - Springer CY - Wien ER -