TY - JOUR A1 - Müssig, Carsten A1 - Altmann, Thomas T1 - Changes in gene expression in response to altered SHL transcript levels N2 - The nuclear SHL protein is composed of a N-terminal BAH domain and a C-terminal PHD finger. Both domains are found in transcriptional regulators and chromatin-modifying proteins. Arabidopsis plants over-expressing SHL showed earlier flowering and senescence phenotype. To identify SHL regulated genes, expression profiles of 35S::SHL plants were established with Affymetrix ATH1 microarrays. About 130 genes showed reduced transcript levels, and about 45 genes showed increased transcript levels in 35S:: SHL plants. The up-regulated genes included AGL20 and AGL9, which most likely cause the early flowering phenotype of 35S:: SHL plants. Late-flowering SHL-antisense lines showed reduced AGL20 mRNA levels, suggesting that AGL20 gene expression depends on the SHL protein. The stronger expression of senescence- and defence-related genes (such as DIN2, DIN11 and PR-1) is in line with the early senescence phenotype of SHL-over- expressing plants. SHL-down-regulated genes included stress response genes and the PSR3.2 gene (encoding a beta- glucosidase). SHL over-expression did not alter the tissue specificity of PSR3.2 gene expression, but resulted in reduced transcript levels in both shoots and roots. Plants with glucocorticoid-inducible SHL over-expression were established and used for expression profiling as well. A subset of genes was identified, which showed consistent changes in the inducible system and in plants with constitutive SHL over-expression Y1 - 2003 UR - https://publishup.uni-potsdam.de/frontdoor/index/index/docId/16628 ER -