TY - JOUR A1 - Borchert, Manuela A1 - Wilke, Max A1 - Schmidt, Christian A1 - Rickers, Karen T1 - Partitioning and equilibration of Rb and Sr between silicate melts and aqueous fluids N2 - Trace element concentrations in aqueous fluids in equilibrium with haplogranitic melt were determined in situ at elevated P-T conditions using hydrothermal diamond-anvil cells and synchrotron-radiation XRF microanalyses. Time- resolved analyses showed that the Rb and Sr concentrations in the fluids became constant in less than 2000 s at all temperatures (500 to 780 degrees C). Although fluid-melt equilibration was very rapid, the change in the concentration of both elements in the fluid with temperature was fairly small (a slight increase for Rb and a slight decrease for Sr). This permitted partitioning data for Rb and Sr between haplogranitic melt and H2O or NaCl+KCl+HCl aqueous solutions at 750 degrees C and 200 to 700 MPa to be obtained from EMP analyses of the quenched melt and the in situ SR-XRF analyses of the equilibrated fluid. The resulting D-Rb(f/m) and D-Sr(f/m) were 0.01 +/- 0.002 and 0.006 +/- 0.001 for water as starting fluid, and increased to 0.47 +/- 0.08 and 0.23 +/- 0.03 for 3.56 m (NaCl+KCl)+0.04 in HCl at pressures of 224 to 360 MPa. In the experiments with H2O as starting fluid, the partition coefficients increased with pressure, i.e. D- Rb(f/m) from 0.01 +/- 0.002 to 0.22 +/- 0.02 and D-Sr(f/m) from 0.006 0.001 to 0.02 +/- 0.005 with a change in pressure from 360 to 700 MPa. At pressures to 360 MPa, the Rb/Sr ratio in the fluid was found to be independent of the initial salt concentration (Rb/Sr = 1.45 +/- 0.6). This ratio increased to 7.89 +/- 1.95 at 700 MPa in experiments with chloride free fluids, which indicates different changes in the Rb and Sr speciation with pressure. Y1 - 2009 UR - https://publishup.uni-potsdam.de/frontdoor/index/index/docId/31589 UR - http://www.sciencedirect.com/science/journal/00092541 SN - 0009-2541 ER -