TY - GEN A1 - Fritz, Michael A1 - Opel, Thomas A1 - Tanski, George A1 - Herzschuh, Ulrike A1 - Meyer, Hanno A1 - Eulenburg, A. A1 - Lantuit, Hugues T1 - Dissolved organic carbon (DOC) in Arctic ground ice T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Thermal permafrost degradation and coastal erosion in the Arctic remobilize substantial amounts of organic carbon (OC) and nutrients which have accumulated in late Pleistocene and Holocene unconsolidated deposits. Permafrost vulnerability to thaw subsidence, collapsing coastlines and irreversible landscape change are largely due to the presence of large amounts of massive ground ice such as ice wedges. However, ground ice has not, until now, been considered to be a source of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC) and other elements which are important for ecosystems and carbon cycling. Here we show, using biogeochemical data from a large number of different ice bodies throughout the Arctic, that ice wedges have the greatest potential for DOC storage, with a maximum of 28.6 mg L-1 (mean: 9.6 mg L-1). Variation in DOC concentration is positively correlated with and explained by the concentrations and relative amounts of typically terrestrial cations such as Mg2+ and K+. DOC sequestration into ground ice was more effective during the late Pleistocene than during the Holocene, which can be explained by rapid sediment and OC accumulation, the prevalence of more easily degradable vegetation and immediate incorporation into permafrost. We assume that pristine snowmelt is able to leach considerable amounts of well-preserved and highly bioavailable DOC as well as other elements from surface sediments, which are rapidly frozen and stored in ground ice, especially in ice wedges, even before further degradation. We found that ice wedges in the Yedoma region represent a significant DOC (45.2 Tg) and DIC (33.6 Tg) pool in permafrost areas and a freshwater reservoir of 4200 km(2). This study underlines the need to discriminate between particulate OC and DOC to assess the availability and vulnerability of the permafrost car-bon pool for ecosystems and climate feedback upon mobilization. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 493 KW - last glacial maximum KW - Beaufort Sea coast KW - Cape Mamontov Klyk KW - permafrost carbon KW - Laptev Sea KW - Lyakhovsky Island KW - climate-change KW - old carbon KW - hologene KW - Siberia Y1 - 2019 UR - https://publishup.uni-potsdam.de/frontdoor/index/index/docId/40815 UR - https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-408155 SN - 1866-8372 IS - 493 ER -