TY - JOUR A1 - Tremblay, Jean Christophe A1 - Klinkusch, Stefan A1 - Klamroth, Tillmann A1 - Saalfrank, Peter T1 - Dissipative many-electron dynamics of ionizing systems T2 - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - In this paper, we perform many-electron dynamics using the time-dependent configuration-interaction method in its reduced density matrix formulation (rho-TDCI). Dissipation is treated implicitly using the Lindblad formalism. To include the effect of ionization on the state-resolved dynamics, we extend a recently introduced heuristic model for ionizing states to the rho-TDCI method, which leads to a reduced density matrix evolution that is not norm-preserving. We apply the new method to the laser-driven excitation of H(2) in a strongly dissipative environment, for which the state-resolve lifetimes are tuned to a few femtoseconds, typical for dynamics of adsorbate at metallic surfaces. Further testing is made on the laser-induced intramolecular charge transfer in a quinone derivative as a model for a molecular switch. A modified scheme to treat ionizing states is proposed to reduce the computational burden associated with the density matrix propagation, and it is thoroughly tested and compared to the results obtained with the former model. The new approach scales favorably (similar to N(2)) with the number of configurations N used to represent the reduced density matrix in the rho-TDCI method, as compared to a N(3) scaling for the model in its original form. Y1 - 2011 UR - https://publishup.uni-potsdam.de/frontdoor/index/index/docId/37066 SN - 0021-9606 VL - 134 IS - 4 PB - American Institute of Physics CY - Melville ER -