TY - JOUR A1 - Groth, Detlef T1 - Modeling a secular trend by Monte Carlo simulation of height biased migration in a spatial network T2 - Anthropologischer Anzeiger : journal of biological and clinical anthropology ; Mitteilungsorgan der Gesellschaft für Anthropologie N2 - Background: In a recent Monte Carlo simulation, the clustering of body height of Swiss military conscripts within a spatial network with characteristic features of the natural Swiss geography was investigated. In this study I examined the effect of migration of tall individuals into network hubs on the dynamics of body height within the whole spatial network. The aim of this study was to simulate height trends. Material and methods: Three networks were used for modeling, a regular rectangular fishing net like network, a real world example based on the geographic map of Switzerland, and a random network. All networks contained between 144 and 148 districts and between 265-307 road connections. Around 100,000 agents were initially released with average height of 170 cm, and height standard deviation of 6.5 cm. The simulation was started with the a priori assumption that height variation within a district is limited and also depends on height of neighboring districts (community effect on height). In addition to a neighborhood influence factor, which simulates a community effect, body height dependent migration of conscripts between adjacent districts in each Monte Carlo simulation was used to re-calculate next generation body heights. In order to determine the direction of migration for taller individuals, various centrality measures for the evaluation of district importance within the spatial network were applied. Taller individuals were favored to migrate more into network hubs, backward migration using the same number of individuals was random, not biased towards body height. Network hubs were defined by the importance of a district within the spatial network. The importance of a district was evaluated by various centrality measures. In the null model there were no road connections, height information could not be delivered between the districts. Results: Due to the favored migration of tall individuals into network hubs, average body height of the hubs, and later, of the whole network increased by up to 0.1 cm per iteration depending on the network model. The general increase in height within the network depended on connectedness and on the amount of height information that was exchanged between neighboring districts. If higher amounts of neighborhood height information were exchanged, the general increase in height within the network was large (strong secular trend). The trend in the homogeneous fishnet like network was lowest, the trend in the random network was highest. Yet, some network properties, such as the heteroscedasticity and autocorrelations of the migration simulation models differed greatly from the natural features observed in Swiss military conscript networks. Autocorrelations of district heights for instance, were much higher in the migration models. Conclusion: This study confirmed that secular height trends can be modeled by preferred migration of tall individuals into network hubs. However, basic network properties of the migration simulation models differed greatly from the natural features observed in Swiss military conscripts. Similar network-based data from other countries should be explored to better investigate height trends with Monte Carlo migration approach. KW - secular trend KW - body height KW - simulation KW - community effect KW - Monte Carlo method KW - network Y1 - 2017 UR - https://publishup.uni-potsdam.de/frontdoor/index/index/docId/56804 SN - 0003-5548 SN - 2363-7099 VL - 74 IS - 1 SP - 81 EP - 88 PB - Schweizerbart CY - Stuttgart ER -