TY - JOUR A1 - Miedema, P. S. A1 - Beye, Martin A1 - Koennecke, R. A1 - Schiwietz, G. A1 - Föhlisch, Alexander T1 - The angular- and crystal-momentum transfer through electron-phonon coupling in silicon and silicon-carbide: similarities and differences T2 - New journal of physics : the open-access journal for physics N2 - Electron-phonon scattering has been studied for silicon carbide (6H-SiC) with resonant inelastic x-ray scattering at the silicon 2p edge. The observed electron-phonon scattering yields a crystal momentum transfer rate per average phonon in 6H-SiC of 1.8 fs(-1) while it is 0.2 fs(-1) in crystalline silicon. The angular momentum transfer rate per average phonon for 6H-SiC is 0.1 fs(-1), which is much higher than 0.0035 fs(-1) obtained for crystalline silicon in a previous study. The higher electron-phonon scattering rates in 6H-SiC are a result of the larger electron localization at the silicon atoms in 6H-SiC as compared to crystalline silicon. While delocalized valence electrons can screen effectively (part of) the electron-phonon interaction, this effect is suppressed for 6H-SiC in comparison to crystalline silicon. Smaller contributions to the difference in electron-phonon scattering rates between 6H-SiC and silicon arise from the lower atomic mass of carbon versus silicon and the difference in local symmetry. KW - electron-phonon scattering KW - 6H-SiC KW - RIXS Y1 - 2014 UR - https://publishup.uni-potsdam.de/frontdoor/index/index/docId/37541 SN - 1367-2630 VL - 16 PB - IOP Publ. Ltd. CY - Bristol ER -