TY - JOUR A1 - Schmidtke, Andrea A1 - Gaedke, Ursula A1 - Weithoff, Guntram T1 - A mechanistic basis for underyielding in phytoplankton communities N2 - Species richness has been shown to increase biomass production of plant communities. Such overyielding occurs when a community performs better than its component monocultures due to the complementarity or dominance effect and is mostly detected in substrate-bound plant communities (terrestrial plants or submerged macrophytes) where resource use complementarity can be enhanced due to differences in rooting architecture and depth. Here, we investigated whether these findings arc generalizeable for free-floating phytoplankton with little potential for spatial differences in resource use. We performed aquatic microcosm experiments with eight phytoplankton species belonging to four functional groups to determine the manner in which species and community biovolume varies in relation to the number of functional groups and hypothesized that an increasing number of functional groups within a community promotes overyielding. Unexpectedly, we did not detect overyielding in any algal community. Instead. total community biovolume tended to decrease with all increasing, number of functional groups. This underyielding was mainly caused by the negative dominance effect that originated from a trade-off between growth rate and filial biovolume. In monoculture, slow-groing species built up higher biovolumes that fast-growing ones, whereas in mixture a fast-growing but low-productive species monopolized most of the nutrients and prevented competing species from developing high biovolumes expected from monocultures. Our results indicated that the Magnitude of the community biovolume was largely determined by the identify of one species. Functional diversity and resource use complementarity were of minor Importance among free-floating phytoplankton, possibly reflecting the lack of spatially heterogeneous resource distribution. As a consequence, biodiversity-ecosystem functioning relationships may not be easily generalizeable from substrate-bound plant to phytoplankton communities and vice versa. Y1 - 2010 UR - https://publishup.uni-potsdam.de/frontdoor/index/index/docId/31460 UR - http://www.esajournals.org/doi/full/10.1890/08-2370.1 SN - 0012-9658 ER -