TY - GEN A1 - Neuschäfer-Rube, Frank A1 - Püschel, Gerhard Paul A1 - Jungermann, Kurt T1 - Characterization of prostaglandin-F₂α-binding sites on rat hepatocyte plasma membranes N2 - Prostaglandin (PG)F₂α has previously been shown to increase glucose output from perfused livers and isolated hepatocytes, where it stimulated glycogen phosphorylase via an inositol-trisphosphatedependent signal pathway. In this study, PGF₂α binding sites on hepatocyte plasma membranes, that might represent the putative receptor, were characterized. Binding studies could not be performed with intact hepatocytes, because PGF₂α accumulated within the cells even at 4°C. The intracellular accumulation was an order of magnitude higher than binding to plasma membranes. Purified hepatocyte plasma membranes had a high-affinity/low-capacity and a low-affinity/highcapacity binding'site for PGF₂α. The respective binding constants for the high-affinity site were Kd = 3 nM and Bmax = 6 fmol/mg membrane protein, and for the low-affinity site Kd = 426 nM and Bmax = 245 fmol/mg membrane protein. Specific PGF₂α binding to the low-affinity site, but not to the high-affinity site, could be enhanced most potently by GTP[γS] followed by GDP[ϐS] and GTP, but not by ATP[γS] or GMP. PGF₂α competed most potently with [³H]PGF₂α for specific binding to hepatocyte plasma membranes, followed by PGD₂ and PGE₂. Since the low-affinity PGF₂α-binding site had a Kd in the concentration range in which PG had previously been shown to be half-maximally active, and since this binding site showed a sensitivity to GTP, it is concluded that it might represent the receptor involved in the PGF₂α signal chain in hepatocytes. A biological function of the high-affinity site is currently not known. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 113 Y1 - 2010 UR - https://publishup.uni-potsdam.de/frontdoor/index/index/docId/4396 UR - https://nbn-resolving.org/urn:nbn:de:kobv:517-opus-45863 ER -