The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 2 of 4
Back to Result List

Sea surface temperatures did not control the first occurrence of Hudson Strait Heinrich Events during MIS 16

  • Hudson Strait (HS) Heinrich Events, ice-rafting events in the North Atlantic originating from the Laurentide ice sheet (LIS), are among the most dramatic examples of millennial-scale climate variability and have a large influence on global climate. However, it is debated as to whether the occurrence of HS Heinrich Events in the (eastern) North Atlantic in the geological record depends on greater ice discharge, or simply from the longer survival of icebergs in cold waters. Using sediments from Integrated Ocean Drilling Program (IODP) Site U1313 in the North Atlantic spanning the period between 960 and 320 ka, we show that sea surface temperatures (SSTs) did not control the first occurrence of HS Heinrich(-like) Events in the sedimentary record. Using mineralogy and organic geochemistry to determine the characteristics of ice-rafting debris (IRD), we detect the first HS Heinrich(-like) Event in our record around 643 ka (Marine Isotope Stage (MIS) 16), which is similar as previously reported for Site U1308. However, the accompanyingHudson Strait (HS) Heinrich Events, ice-rafting events in the North Atlantic originating from the Laurentide ice sheet (LIS), are among the most dramatic examples of millennial-scale climate variability and have a large influence on global climate. However, it is debated as to whether the occurrence of HS Heinrich Events in the (eastern) North Atlantic in the geological record depends on greater ice discharge, or simply from the longer survival of icebergs in cold waters. Using sediments from Integrated Ocean Drilling Program (IODP) Site U1313 in the North Atlantic spanning the period between 960 and 320 ka, we show that sea surface temperatures (SSTs) did not control the first occurrence of HS Heinrich(-like) Events in the sedimentary record. Using mineralogy and organic geochemistry to determine the characteristics of ice-rafting debris (IRD), we detect the first HS Heinrich(-like) Event in our record around 643 ka (Marine Isotope Stage (MIS) 16), which is similar as previously reported for Site U1308. However, the accompanying high-resolution alkenone-based SST record demonstrates that the first HS Heinrich(-like) Event did not coincide with low SSTs. Thus, the HS Heinrich(-like) Events do indicate enhanced ice discharge from the LIS at the end of the Mid-Pleistocene Transition, not simply the survivability of icebergs due to cold conditions in the North Atlantic.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:B. David A. Naafs, Jens HefterORCiD, Patrizia Ferretti, Rüdiger Stein, Gerald H. Haug
DOI:https://doi.org/10.1029/2011PA002135
ISSN:0883-8305
ISSN:1944-9186
Title of parent work (English):Paleoceanography
Publisher:American Geophysical Union
Place of publishing:Washington
Publication type:Article
Language:English
Year of first publication:2011
Publication year:2011
Release date:2017/03/26
Volume:26
Issue:4
Number of pages:10
Funding institution:Deutsche Forschungsgemeinschaft (DFG) [STE412/23-1]; European Community [MEIF-CT-2006-42169]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.