The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 2 of 16
Back to Result List

Rate of crustal shortening and non-Coulomb behaviour of an active accretionary wedge - the folded fluvial terraces in Makran (SE, Iran)

  • We surveyed fluvial terraces to decipher the Quaternary increment of crustal shortening and shortening rate in the on-shore Makran Accretionary Wedge. We focused on three major catchment basins and associated fold systems. Terrace profiles reconstructed from differential GPS measurements combined with DEM revealed two regional dominant wavelengths, about 5 km in the northern part of the study area and about 15 km to the south. These two wavelengths suggest the existence of two active decollement layers at two rooting depths. The average shortening rate due to folding is estimated at 0.8-1.2 mm/a over the last 130 ka. This accounts for 10-15% of the shortening rate (similar to 8 mm/a) given by kinematic GPS measurements between Chabahar and Bazman and 3% of the convergence between Arabia and Eurasia, across the Makran subduction zone. Despite active deformation and a relatively high shortening rate, the geophysical record shows nearly absent seismic activity in Makran. We propose that strain accumulated in folds over intermediateWe surveyed fluvial terraces to decipher the Quaternary increment of crustal shortening and shortening rate in the on-shore Makran Accretionary Wedge. We focused on three major catchment basins and associated fold systems. Terrace profiles reconstructed from differential GPS measurements combined with DEM revealed two regional dominant wavelengths, about 5 km in the northern part of the study area and about 15 km to the south. These two wavelengths suggest the existence of two active decollement layers at two rooting depths. The average shortening rate due to folding is estimated at 0.8-1.2 mm/a over the last 130 ka. This accounts for 10-15% of the shortening rate (similar to 8 mm/a) given by kinematic GPS measurements between Chabahar and Bazman and 3% of the convergence between Arabia and Eurasia, across the Makran subduction zone. Despite active deformation and a relatively high shortening rate, the geophysical record shows nearly absent seismic activity in Makran. We propose that strain accumulated in folds over intermediate decollement levels within a thick, incompletely lithified sedimentary cover explains the essentially aseismic, recent tectonics in this region. The importance of folds points to imperfect Coulomb behaviour of the wedge. (C) 2012 Elsevier B.V. All rights reserved.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Negar Haghipour, Jean-Pierre Burg, Florian Kober, Gerold ZeilingerORCiDGND, Susan Ivy-Ochs, Peter W. Kubik, Mohammad Faridi
DOI:https://doi.org/10.1016/j.epsl.2012.09.001
ISSN:0012-821X
Title of parent work (English):Earth & planetary science letters
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Year of first publication:2012
Publication year:2012
Release date:2017/03/26
Tag:Be-10 dating; accretionary wedge; fluvial terraces; shortening rate
Volume:355
Number of pages:12
First page:187
Last Page:198
Funding institution:ETH project [0-20481-08]; Swiss National Fond project [2-77644-09]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Ernährungswissenschaft
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.