The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 112 of 551
Back to Result List

Entwicklung neuer triphiler, fluorkohlenstofffreier Blockcopolymere und Untersuchung ihrer Eigenschaften für Multikompartiment-Mizellen

Synthesis of new triphilic fluorocarbon -free block copolymers and analysis of their suitability as multicompartment micelles

  • Neue Systeme für triphile, fluorkohlenstofffreie Blockcopolymere in Form von Acrylat-basierten thermoresponsiven Blockcopolymeren sowie Acrylat- bzw. Styrol-basierten Terblock-Polyelektrolyten mit unterschiedlich chaotropen Kationen des jeweiligen polyanionischen Blocks wurden entwickelt. Multikompartiment-Mizellen, mizellare Aggregate mit ultrastrukturiertem hydrophobem Mizellkern die biologischen Strukturen wie dem Humanalbumin nachempfunden sind, sollten bei der Selbstorganisation in wässriger Umgebung entstehen. Durch Verwendung apolarer und polarer Kohlenwasserstoff-Domänen anstelle von fluorophilen Fluorkohlenstoff-Domänen sollte erstmals anhand solcher triphilen Systeme nachgewiesen werden, ob diese in der Lage zur selektiven Aufnahme hydrophober Substanzen in unterschiedliche Domänen des Mizellkerns sind. Mit Hilfe von sequentieller RAFT-Polymerisation wurden diese neuen triphilen Systeme hergestellt, die über einen permanent hydrophilen, eine permanent stark hydrophoben und einen dritten Block verfügen, der durch externeNeue Systeme für triphile, fluorkohlenstofffreie Blockcopolymere in Form von Acrylat-basierten thermoresponsiven Blockcopolymeren sowie Acrylat- bzw. Styrol-basierten Terblock-Polyelektrolyten mit unterschiedlich chaotropen Kationen des jeweiligen polyanionischen Blocks wurden entwickelt. Multikompartiment-Mizellen, mizellare Aggregate mit ultrastrukturiertem hydrophobem Mizellkern die biologischen Strukturen wie dem Humanalbumin nachempfunden sind, sollten bei der Selbstorganisation in wässriger Umgebung entstehen. Durch Verwendung apolarer und polarer Kohlenwasserstoff-Domänen anstelle von fluorophilen Fluorkohlenstoff-Domänen sollte erstmals anhand solcher triphilen Systeme nachgewiesen werden, ob diese in der Lage zur selektiven Aufnahme hydrophober Substanzen in unterschiedliche Domänen des Mizellkerns sind. Mit Hilfe von sequentieller RAFT-Polymerisation wurden diese neuen triphilen Systeme hergestellt, die über einen permanent hydrophilen, eine permanent stark hydrophoben und einen dritten Block verfügen, der durch externe Einflüsse, speziell die Induzierung eines thermischen Coil-to-globule-Übergangs bzw. die Zugabe von organischen, hydrophoben Gegenionen von einem wasserlöslichen in einen polar-hydrophoben Block umgewandelt werden kann. Als RAFT-Agens wurde 4-(Trimethylsilyl)benzyl(3-(trimethylsilyl)-propyl)-trithiocarbonat mit zwei unterschiedlichen TMS-Endgruppen verwendet, das kontrollierte Reaktions-bedingungen sowie die molekulare Charakterisierung der komplexen Copolymere ermöglichte. Die beiden Grundtypen der linearen ternären Blockcopolymere wurden jeweils in zwei 2 Modell-Systeme, die geringfügig in ihren chemischen Eigenschaften sowie in dem Blocklängenverhältnis von hydrophilen und hydrophoben Polymersegmenten variierten, realisiert und unterschiedliche Permutation der Blöcke aufwiesen. Als ersten Polymertyp wurden amphiphile thermoresponsive Blockcopolymere verwendet. Modell-System 1 bestand aus dem permanent hydrophoben Block Poly(1,3-Bis(butylthio)-prop-2-yl-acrylat), permanent hydrophilen Block Poly(Oligo(ethylenglykol)monomethyletheracrylat) und den thermoresponsiven Block Poly(N,N‘-Diethylacrylamid), dessen Homopolymer eine LCST-Phasenübergang (LCST, engl.: lower critical solution temperature) bei ca. 36°C aufweist. Das Modell-System 2 bestand aus dem permanent hydrophilen Block Poly(2-(Methylsulfinyl)ethylacrylat), dem permanent hydrophoben Block Poly(2-Ethylhexylacrylat) und wiederum Poly(N,N‘-Diethylacrylamid). Im ternären Blockcopolymer erhöhte sich, je nach Blocksequenz und relativen Blocklängen, der LCST-Übergang auf 50 – 65°C. Bei der Untersuchung der Selbstorganisation für die Polymer-Systeme dieses Typs wurde die Temperatur variiert, um verschieden mizellare Überstrukturen in wässriger Umgebung zu erzeugen bzw. oberhalb des LCST-Übergangs Multikompartiment-Mizellen nachzuweisen. Die Unterschiede in der Hydrophilie bzw. den sterischen Ansprüche der gewählten hydrophilen Blöcke sowie die Variation der jeweiligen Blocksequenzen ermöglichte darüber hinaus die Bildung verschiedenster Morphologien mizellarer Aggregate. Der zweite Typ basierte auf ein Terblock-Polyelektrolyt-System mit Polyacrylaten bzw. Polystyrolen als Polymerrückgrat. Polymere ionische Flüssigkeiten wurden als Vorlage der Entwicklung zweier Modell-Systeme genommen. Eines der beiden Systeme bestand aus dem permanent hydrophilen Block Poly(Oligo(ethylenglykol)monomethyletheracrylat, dem permanent hydrophoben Block Poly(2-Ethylhexylacrylat) sowie dem Polyanion-Block Poly(3-Sulfopropylacrylat). Die Hydrophobie des Polyanion-Blocks variierte durch Verwendung großer organischer Gegenionen, nämlich Tetrabutylammonium, Tetraphenylphosphonium und Tetraphenylstibonium. Analog wurde in einem weiteren System aus dem permanent hydrophilen Block Poly(4-Vinylbenzyltetrakis(ethylenoxy)methylether), dem permanent hydrophoben Block Poly(para-Methylstyrol) und Poly(4-Styrolsulfonat) mit den entsprechenden Gegenionen gebildet. Aufgrund unterschiedlicher Kettensteifigkeit in beiden Modell-Systemen sollte es bei der Selbstorganisation der mizellarer Aggregate zu unterschiedlichen Überstrukturen kommen. Mittels DSC-Messungen konnte nachgewiesen werden, dass für alle Modell-Systeme die Blöcke in Volumen-Phase miteinander inkompatibel waren, was eine Voraussetzung für Multikompartimentierung von mizellaren Aggregaten ist. Die Größe mizellarer Aggregate sowie der Einfluss externer Einflüsse wie der Veränderung der Temperatur bzw. der Hydrophobie und Größe von Gegenionen auf den hydrodynamischen Durchmesser mittels DLS-Untersuchungen wurden für alle Modell-Systeme untersucht. Die Ergebnisse zu den thermoresponsiven ternären Blockcopolymeren belegten , dass sich oberhalb der Phasenübergangstemperatur des thermoresponsiven Blocks die Struktur der mizellaren Aggregate änderte, indem der p(DEAm)-Block scheinbar kollabierte und so zusammen mit den permanent hydrophoben Block den jeweiligen Mizellkern bildete. Nach gewisser Equilibrierungszeit konnten bei Raumtemperatur dir ursprünglichen mizellaren Strukturen regeneriert werden. Hingegen konnte für die Terblock-Polyelektrolyt-Systeme bei Verwendung der unterschiedlich hydrophoben Gegenionen kein signifikanter Unterschied in der Größe der mizellaren Aggregate beobachtet werden. Zur Abbildung der mizellaren Aggregate mittels kryogene Transmissionselektronenmikroskopie (cryo-TEM) der mizellaren Aggregate war mit Poly(1,3-Bis(butylthio)-prop-2-yl-acrylat) ein Modell-System so konzipiert, dass ein erhöhter Elektronendichtekontrast durch Schwefel-Atome die Visualisierung ultrastrukturierter hydrophober Mizellkerne ermöglichte. Dieser Effekt sollte in den Terblock-Polyelektrolyt-Systemen auch durch die Gegenionen Tetraphenylphosphonium und Tetraphenylstibonium nachgestellt werden. Während bei den thermoresponsiven Systemen auch oberhalb des Phasenübergangs kein Hinweis auf Ultrastrukturierung beobachtet wurde, waren für die Polyelektrolyt-Systeme, insbesondere im Fall von Tetraphenylstibonium als Gegenion Überstrukturen zu erkennen. Der Nachweis der Bildung von Multikompartiment-Mizellen war für beide Polymertypen mit dieser abbildenden Methode nicht möglich. Die Unterschiede in der Elektronendichte einzelner Blöcke müsste möglicherweise weiter erhöht werden um Aussagen diesbezüglich zu treffen. Die Untersuchung von ortsspezifischen Solubilisierungsexperimenten mit solvatochromen Fluoreszenzfarbstoffen mittels „steady-state“-Fluoreszenzspektroskopie durch Vergleich der Solubilisierungsorte der Terblockcopolymere bzw. –Polyelektrolyte mit den jeweiligen Solubilisierungsorten von Homopolymer- und Diblock-Vorstufen sollten den qualitativen Nachweis der Multikompartimentierung erbringen. Aufgrund der geringen Mengen an Farbstoff, die für die Solubilisierungsexperimente eingesetzt wurden zeigten DLS-Untersuchungen keine störenden Effekte der Sonden auf die Größe der mizellaren Aggregate. Jedoch erschwerten Quench-Effekte im Falle der Polyelektrolyt Modell-Systeme eine klare Interpretation der Daten. Im Falle der Modell-Systeme der thermoresponsiven Blockcopolymere waren dagegen deutliche solvatochrome Effekte zwischen der Solubilisierung in den mizellaren Aggregaten unterhalb und oberhalb des Phasenübergangs zu erkennen. Dies könnte ein Hinweis auf Multikompartimentierung oberhalb des LCST-Übergangs sein. Ohne die Informationen einer Strukturanalyse wie z.B. der Röntgen- oder Neutronenkleinwinkelstreuung (SAXS oder SANS), kann nicht abschließend geklärt werden, ob die Solubilisierung in mizellaren hydrophoben Domänen des kollabierten Poly(N,N‘-Diethylacrylamid) erfolgt oder in einer Mischform von mizellaren Aggregaten mit gemittelter Polarität.show moreshow less
  • New systems for triphilic fluorine-carbon-free block copolymers in the form of acrylate-based thermoresponsive block copolymers and acrylate- and styrene-based ternary block polyelectrolytes with different chaotropic cations of the respective polyanionic blocks have been developed. Multicompartment micelles, micellar aggregates with ultrastructured hydrophobic micelle core which are bio-inspired by biological structures like human serum albumin, should occur during the self-assembly in aqueous environment. By having nonpolar and polar hydrocarbon domains instead of fluorocarbon domains in these triphilic systems, it should be possible to demonstrate for the first time, whether they are capable of selectively uptaking hydrophobic substances in different hydrophobic domains of the micelle core. These new triphilic systems were prepared by using sequential RAFT polymerization. These polymers are based on a permanently hydrophilic polymer block; a permanent highly hydrophobic block and a third block which is sensitive to the result ofNew systems for triphilic fluorine-carbon-free block copolymers in the form of acrylate-based thermoresponsive block copolymers and acrylate- and styrene-based ternary block polyelectrolytes with different chaotropic cations of the respective polyanionic blocks have been developed. Multicompartment micelles, micellar aggregates with ultrastructured hydrophobic micelle core which are bio-inspired by biological structures like human serum albumin, should occur during the self-assembly in aqueous environment. By having nonpolar and polar hydrocarbon domains instead of fluorocarbon domains in these triphilic systems, it should be possible to demonstrate for the first time, whether they are capable of selectively uptaking hydrophobic substances in different hydrophobic domains of the micelle core. These new triphilic systems were prepared by using sequential RAFT polymerization. These polymers are based on a permanently hydrophilic polymer block; a permanent highly hydrophobic block and a third block which is sensitive to the result of external influences, especially the induction of a thermal coil-to-globule transition in the case of thermoresponsive block copolymers or adding organic hydrophobic counter ions in the case of block polyelectrolytes. The third block for each system can be converted from a water-soluble in a polar hydrophobic block due to external stimulus. The RAFT agent, 4- (trimethylsilyl) benzyl (3- (trimethylsilyl) propyl) trithiocarbonate, has two different TMS-labeled end groups, which enable controlled polymerization conditions and the exact molecular characterization of the complex copolymers. Each of the two basic types of linear ternary block copolymers, which were prepared for this work, were implemented in two 2 model systems that varied slightly in their chemical properties, as well as in the block length ratio of hydrophilic and hydrophobic polymer segments and different block sequences. The first polymer type is based on amphiphilic thermoresponsive block copolymers. Model system 1 consisted of the permanent hydrophobic block p(1,3-bis (butylthio) prop-2-yl acrylate), the permanently hydrophilic block p(oligo (ethylene glycol) mono methyl ether acrylate) and the thermoresponsive block p(N,N–diethyl acrylamide) whose homopolymer has a LCST (lower critical solution temperature) like phase transition approximately about 36°C. The model system 2 consisted of the permanent hydrophilic block p(2- (methylsulfinyl) ethyl acrylate), the permanently hydrophobic block p(2-ethylhexyl acrylate) and again p(N,N–diethyl acrylamide). The LCST is increased in ternary block copolymers to 50 - 65°C, depending on the block sequence and relative block lengths. To study the self-assembly of these two polymer systems, their aqueous micellar solutions where analyzed above and below LCST to produce different micellar superstructures in an aqueous environment and to prove the occurrence of multicompartment micelles above LCST. The differences in the hydrophilicity or the individual steric requirements of the chosen hydrophilic blocks as well as the variation of the respective block sequences lead additionally to different morphologies of micellar aggregates. The second type of polymers is based on ternary block polyelectrolytes with polyacrylates and polystyrenes as polymer backbone respectively. Polymeric ionic liquids were taken as role model for the development of two model systems of block polyelectrolytes. One of the two systems consisting of the permanently hydrophilic p(oligo (ethylene glycol) mono methyl ether acrylate), the permanent hydrophobic block p(2-ethylhexyl acrylate) and the polyanion block p(3-sulfopropyl acrylate) (= model system 3). The hydrophobicity of the polyanion blocks varied largely by using organic counter ions, namely tetrabutyl ammonium, tetraphenyl phosphonium and tetraphenyl stibonium. Analogously, model system 4 consists of a permanently hydrophilic block p(4-vinylmethoxybenzyltetrakis (oxyethylene) ether), a permanently hydrophobic block p(para-methyl styrene) and p(4-styrene sulfonate) formed with the corresponding counter ions. Due to different chain stiffness in both model systems there should be different superstructures of micellar aggregates in aqueous solution. DSC (differential scanning calorimetry) measurements could demonstrate that the all polymer blocks for each modell system were incompatible with each other in bulk phase. This property is a prerequisite for ultra-structured hydrophobic cores of micellar aggregates. The influence of external factors such as change of temperature or change of hydrophobicity and size of counter ions on the size of micellar aggregates for all model systems was examined by DLS measurements. The results on the thermoresponsive ternary block copolymers showed that above the phase transition temperature of the thermo-responsive block the structure of micellar aggregates changed because the p(N,N–diethyl acrylamide) block apparently collapsed formed a subdivided micellar core together with the permanently hydrophobic block. Some equilibration time for the thermoresponsive block copolymer systems were needed to ensure that heoriginal micellar structures could be regenerated after cooling heated auqeous micellar solutions to room temperature. However, for the ternary block polyelectrolytes, there was no significant difference in the size of the micellar aggregates due to the exchange of counter ions which differ by their hydrophobicity. For imaging the micellar aggregates and especially multicompartment micelles by means of cryogenic transmission electron microscopy (cryo-TEM), the model system 1 with p(1,3-bis (butylthio) -prop-2-yl acrylate) as permanently hydrophobic block was specifically designed so that the increased electron density contrast by sulfur atoms should enable the visualization of multicompartment micelles. This effect should be readjusted in the ternary block polyelectrolyte systems by the counter ions tetraphenyl phosphonium and tetraphenyl stibonium. While in the thermoresponsive block copolymer systems it was possible to observe new kinds of micellar aggregates above LCST, there was no indication on ultrastructuring in the micellar cores for all analyzed systems. Otherwise by using tetraphenyl stibonium counter ions in block polyelectrolyte systems, some kind of ultrastructured micellar aggregates with seemingly subdivided micellar cores could be observed. The detection of the formation of multicompartment micelles was not possible for both types of polymers with this direct imaging method. The differences in the electron density of individual blocks might have to be further increased to make statements concerning the self-assembly into multicompartment micelles. Site-specific solubilization experiments with solvatochromic fluorescent dyes by using steady-state fluorescence spectroscopy should provide the qualitative evidence of multicompartment micelles. The selective solubilization areas of different kinds of substances in self-assembled structures of all ternary block copolymers and ternary polyelectrolytes were compared with the solubilization areas in their respective homopolymer and diblock precursors. Because of the small amounts of dye that have been used for the solubilization DLS measurements showed no interfering effects of the probes on the size of the micellar aggregates. However, quenching effects made a clear interpretation of the data in the case of polyelectrolyte model systems difficult. In the case of model systems 1 and 2 a change of the solubilization areas of fluorescent dyes due to the occurrence significant solvatochromic effects (stokes shifts) above LCST could be observed. The effect was reversibel. This could be an indication that the micellar aggregates self-assemble into multicompartment micelles above the LCST transition. Without the information of a structural analysis such as the small angle x-ray scattering or small angle neutron scattering (SAXS or SANS), it cannot be conclusively clarified whether the solubilization occurs in micellar hydrophobic domains of the collapsed p(N,N–diethyl acrylamide), or in a mixed form of micellar aggregates with mixed polarity.show moreshow less

Download full text files

Export metadata

Metadaten
Author details:Frank Stahlhut
URN:urn:nbn:de:kobv:517-opus4-96299
Supervisor(s):André Laschewsky
Publication type:Doctoral Thesis
Language:German
Publication year:2016
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2016/08/02
Release date:2016/09/27
Tag:Blockcopolymere; Fluoereszenzsonden; Multikompartiment-Mizellen; RAFT; Solubilisierung; cryo-TEM
RAFT; block copolymers; cryo-TEM; fluorescence probe experiments; fluorescent dyes; multicompartment micelles; triphil; triphilic
First page:iv, 191
RVK - Regensburg classification:VK 5070, VK 8007
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.