• search hit 5 of 6
Back to Result List

Simulation of volumetric swelling of degradable poly[(rac-lactide)-co-glycolide] based polyesterurethanes containing different urethane-linkers

  • Aim: The hydrolytic degradation behavior of degradable aliphatic polyester-based polymers is strongly influenced by the uptake or transport of water into the polymer matrix and also the hydrolysis rate of ester bonds. Methods: We examined the volumetric swelling behavior of poly[(rac-lactide)-co-glycolide] (PLGA) and PLGA-based polyurethanes (PLGA-PU) with water contents of 0 wt%, 2 wt% and 7 wt% water at 310 K using a molecular modeling approach. Polymer systems with a number average molecular weight of M-n = 10,126 g.mol(-1) were constructed from PLGA with a lactide content of 67 mol%, whereby PLGA-PU systems were composed of five PLGA segments with M-n = 2052 g.mol(-1), which were connected via urethane linkers originated from 2,2,4-trimethyl hexamethylene-1,6-diisocyanate (TMDI), hexamethyl-1,6-diisocyanate (HDI), or L-lysine-1,6-diisocyanate (LDI). Results: The calculated densities of the dry PLGA-PU systems were found to be lower than for pure PLGA. The obtained volumetric swelling of the PLGA-PU was depending on the type ofAim: The hydrolytic degradation behavior of degradable aliphatic polyester-based polymers is strongly influenced by the uptake or transport of water into the polymer matrix and also the hydrolysis rate of ester bonds. Methods: We examined the volumetric swelling behavior of poly[(rac-lactide)-co-glycolide] (PLGA) and PLGA-based polyurethanes (PLGA-PU) with water contents of 0 wt%, 2 wt% and 7 wt% water at 310 K using a molecular modeling approach. Polymer systems with a number average molecular weight of M-n = 10,126 g.mol(-1) were constructed from PLGA with a lactide content of 67 mol%, whereby PLGA-PU systems were composed of five PLGA segments with M-n = 2052 g.mol(-1), which were connected via urethane linkers originated from 2,2,4-trimethyl hexamethylene-1,6-diisocyanate (TMDI), hexamethyl-1,6-diisocyanate (HDI), or L-lysine-1,6-diisocyanate (LDI). Results: The calculated densities of the dry PLGA-PU systems were found to be lower than for pure PLGA. The obtained volumetric swelling of the PLGA-PU was depending on the type of urethane linker, whereby all swollen PLGA-PUs contained larger free volume distribution compared to pure PLGA. The mean square displacement curves for dry PLGA and PLGA-PUs showed that urethane linker units reduce the mobility of the polymer chains, while an increase in backbone atoms mobility was found, when water was added to these systems. Consequently, an increased water uptake of PLGA-PU matrices combined with a higher mobility of the chain segments should result in an accelerated hydrolytic chain scission rate in comparison to PLGA. Conclusions: It can be anticipated that the incorporation of urethane linkers might be a helpful tool to adjust the degradation behavior of polyesters.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Ehsan Ghobadi, Matthias HeuchelORCiDGND, Karl KratzORCiD, Andreas LendleinORCiDGND
DOI:https://doi.org/10.5301/JABFM.2012.10432
ISSN:2280-8000
Title of parent work (English):Journal of applied biomaterials & functional materials
Publisher:Wichtig
Place of publishing:Milano
Publication type:Article
Language:English
Year of first publication:2012
Publication year:2012
Release date:2017/03/26
Tag:Hydrolytic degradation; Molecular dynamics simulation; Polyesterurethane
Volume:10
Issue:3
Number of pages:9
First page:293
Last Page:301
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.