Core-shell upconversion nanoparticles - investigation of dopant intermixing and surface modification

Kern-Schale Aufkonvertierende Nanopartikel — eine Untersuchung der Dotandenvermischung und Oberflächenmodifikation

  • Frequency upconversion nanoparticles (UCNPs) are inorganic nanocrystals capable to up-convert incident photons of the near-infrared electromagnetic spectrum (NIR) into higher energy photons. These photons are re-emitted in the range of the visible (Vis) and even ultraviolet (UV) light. The frequency upconversion process (UC) is realized with nanocrystals doped with trivalent lanthanoid ions (Ln(III)). The Ln(III) ions provide the electronic (excited) states forming a ladder-like electronic structure for the Ln(III) electrons in the nanocrystals. The absorption of at least two low energy photons by the nanoparticle and the subsequent energy transfer to one Ln(III) ion leads to the promotion of one Ln(III) electron into higher excited electronic states. One high energy photon will be emitted during the radiative relaxation of the electron in the excited state back into the electronic ground state of the Ln(III) ion. The excited state electron is the result of the previous absorption of at least two low energy photons. The UC process isFrequency upconversion nanoparticles (UCNPs) are inorganic nanocrystals capable to up-convert incident photons of the near-infrared electromagnetic spectrum (NIR) into higher energy photons. These photons are re-emitted in the range of the visible (Vis) and even ultraviolet (UV) light. The frequency upconversion process (UC) is realized with nanocrystals doped with trivalent lanthanoid ions (Ln(III)). The Ln(III) ions provide the electronic (excited) states forming a ladder-like electronic structure for the Ln(III) electrons in the nanocrystals. The absorption of at least two low energy photons by the nanoparticle and the subsequent energy transfer to one Ln(III) ion leads to the promotion of one Ln(III) electron into higher excited electronic states. One high energy photon will be emitted during the radiative relaxation of the electron in the excited state back into the electronic ground state of the Ln(III) ion. The excited state electron is the result of the previous absorption of at least two low energy photons. The UC process is very interesting in the biological/medical context. Biological samples (like organic tissue, blood, urine, and stool) absorb high-energy photons (UV and blue light) more strongly than low-energy photons (red and NIR light). Thanks to a naturally occurring optical window, NIR light can penetrate deeper than UV light into biological samples. Hence, UCNPs in bio-samples can be excited by NIR light. This possibility opens a pathway for in vitro as well as in vivo applications, like optical imaging by cell labeling or staining of specific organic tissue. Furthermore, early detection and diagnosis of diseases by predictive and diagnostic biomarkers can be realized with bio-recognition elements being labeled to the UCNPs. Additionally, "theranostic" becomes possible, in which the identification and the treatment of a disease are tackled simultaneously. For this to succeed, certain parameters for the UCNPs must be met: high upconversion efficiency, high photoluminescence quantum yield, dispersibility, and dispersion stability in aqueous media, as well as availability of functional groups to introduce fast and easy bio-recognition elements. The UCNPs used in this work were prepared with a solvothermal decomposition synthesis yielding in particles with NaYF4 or NaGdF4 as host lattice. They have been doped with the Ln(III) ions Yb3+ and Er3+, which is only one possible upconversion pair. Their upconversion efficiency and photoluminescence quantum yield were improved by adding a passivating shell to reduce surface quenching. However, the brightness of core-shell UCNPs stays behind the expectations compared to their bulk material (being at least μm-sized particles). The core-shell structures are not clearly separated from each other, which is a topic in literature. Instead, there is a transition layer between the core and the shell structure, which relates to the migration of the dopants within the host lattice during the synthesis. The ion migration has been examined by time-resolved laser spectroscopy and the interlanthanoid resonance energy transfer (LRET) in the two different host lattices from above. The results are presented in two publications, which dealt with core-shell-shell structured nanoparticles. The core is doped with the LRET-acceptor (either Nd3+ or Pr3+). The intermediate shell serves as an insulation shell of pure host lattice material, whose shell thickness has been varied within one set of samples having the same composition, so that the spatial separation of LRET-acceptor and -donor changes. The outer shell with the same host lattice is doped with the LRET-donor (Eu3+). The effect of the increasing insulation shell thickness is significant, although the LRET cannot be suppressed completely. Next to the Ln(III) migration within a host lattice, various phase transfer reactions were investigated in order to subsequently perform surface modifications for bioapplications. One result out of this research has been published using a promising ligand, that equips the UCNP with bio-modifiable groups and has good potential for bio-medical applications. This particular ligand mimics natural occurring mechanisms of mussel protein adhesion and of blood coagulation, which is why the UCNPs are encapsulated very effectively. At the same time, bio-functional groups are introduced. In a proof-of-concept, the encapsulated UCNP has been coupled successfully with a dye (which is representative for a biomarker) and the system’s photoluminescence properties have been investigated.show moreshow less
  • Frequenzaufkonvertierende Nanopartikel (UCNP) sind anorganische Nanokristalle. Sie können einfallende Photonen des nah-infraroten elektromagnetischen Spektrums (NIR) in höher energetische Photonen im Bereich des sichtbaren Lichtes und sogar des ultravioletten Lichtes (UV) umwandeln und wieder emittieren. Dieser Frequenzaufkonversionsprozess (UC) basiert auf Nanokristallen, die mit dreiwertigen Lanthanoid-Ionen (Ln(III)) dotiert sind. Die elektronisch angeregten Zustände der Ln(III)-Ionen stehen zur Verfügung, mit deren Hilfe Elektronen über eine leiterartige elektronische Struktur der elektronischen Zustände der Ln(III)-Ionen in höher angeregte Zustände gelangen können. Zuvor müssen mindestens zwei niederenergetische Photonen vom Nanopartikel absorbiert werden. Die absorbierte Energie muss über einen oder mehrere Energieübertragungen das gleiche Ln(III)-Ion erreichen um beim strahlenden Relaxieren des Elektrones im angeregten Zustand zurück in den elektronischen Grundzustand des Ln(III)-Ions ein höherenergetisches Photon zuFrequenzaufkonvertierende Nanopartikel (UCNP) sind anorganische Nanokristalle. Sie können einfallende Photonen des nah-infraroten elektromagnetischen Spektrums (NIR) in höher energetische Photonen im Bereich des sichtbaren Lichtes und sogar des ultravioletten Lichtes (UV) umwandeln und wieder emittieren. Dieser Frequenzaufkonversionsprozess (UC) basiert auf Nanokristallen, die mit dreiwertigen Lanthanoid-Ionen (Ln(III)) dotiert sind. Die elektronisch angeregten Zustände der Ln(III)-Ionen stehen zur Verfügung, mit deren Hilfe Elektronen über eine leiterartige elektronische Struktur der elektronischen Zustände der Ln(III)-Ionen in höher angeregte Zustände gelangen können. Zuvor müssen mindestens zwei niederenergetische Photonen vom Nanopartikel absorbiert werden. Die absorbierte Energie muss über einen oder mehrere Energieübertragungen das gleiche Ln(III)-Ion erreichen um beim strahlenden Relaxieren des Elektrones im angeregten Zustand zurück in den elektronischen Grundzustand des Ln(III)-Ions ein höherenergetisches Photon zu emittieren. Der Frequenzaufkonversionsprozess ist sehr interessant für die Anwendung im biologisch/medizinischen Bereich. Biologische Proben (z.B. organisches Gewebe, Blut, Urin und Stuhl) absorbieren höherenergetische Photonen (UV) stärker als niederenergetische Photonen (NIR). Dank eines natürlich vorkommenden optischen Fensters in biologischen Proben kann NIR-Licht tiefer als UV-Licht eindringen, sodass die UCNPs in biologischen Proben mit NIR-Licht angeregt werden können. Dies ermöglicht in vitro als auch in vivo Anwendungen, z.B. für die optische Bildgebung durch Markieren von Zellen oder durch Einfärben von bestimmten Bereichen organischer Gewebe. Frühzeitige Erkennung von Krankheiten kann durch prädiktive und diagnostisch geeignete Biomarker, die mit Erkennungselementen an den UCNPs detektiert werden, realisiert werden. Demnach ist „Theranostic“ ein mögliches Szenario, das die Identifikation und die gleichzeitige Behandlung einer Krankheit ermöglichen könnte. Um diese Vision zu realisieren, müssen die UCNPs bestimmte Parameter erfüllen: Eine hohe Aufkonversionseffizienz, eine hohe Photolumineszenzquantenausbeute, eine gute Dispergierbarkeit und Stabilität der Dispersion in wässrigen Medien, sowie die Verfügbarkeit von funktionellen Gruppen, um schnell und einfach biologische Erkennungselemente daran zu koppeln. Die UCNPs dieser Arbeit wurden mit Hilfe einer solvothermalen Zersetzungsreaktion durchgeführt. Die Nanopartikel bestanden aus unterschiedlichen Wirtsgittern, entweder aus NaYF4 oder NaGdF4. Die Wirtsgitter wurden mit den Ln(III)-Ionen Yb3+ und Er3+ dotiert. Die Aufkonversionseffizienz, somit auch deren Quantenausbeute, konnte mit einer passivierenden Schale verbessert werden. Dennoch leuchten die Kern-Schale-UCNPs schlechter als es im Vergleich mit μm-großen Partikeln zu erwarten wäre. Die Kern-Schale-Strukturen gehen ineinander über und sind nicht klar voneinander getrennt. Zwischen dem Kern und der Schale existiert eine Übergangsregion, die mit der Wanderung der Ionen des Wirtsgitters und den dotierten Ln(III)-Ionen einhergeht. Diese Beobachtung wird auch in der Literatur diskutiert. Die Ionenwanderung wurde mit Hilfe von zeitaufgelöster Laserspektroskopie und dem Interlanthanoidenergietransfer (LRET) in den beiden erwähnten Wirtsgittern untersucht. Die Ergebnisse sind in zwei Publikationen veröffentlicht, die auf Kern-Schale-Schale-Strukturen basieren. Der Kern ist mit dem LRET-Akzeptor dotiert (Nd3+ oder Pr3+). Die Zwischenschale besteht aus dem gleichen Wirtsgitter ohne Dotierstoffe und dient als Isolationsschale, deren Schalendicke innerhalb einer Experimentierreihe variiert wurde, um eine räumliche Trennung von LRET-Akzeptor und -Donor zu schaffen. Die äußere Schale, aus dem gleichen Wirtsgitter, ist mit dem LRET-donor (Eu3+) dotiert. Der Effekt der wachsenden Isolationsschalendicke ist signifikant. Aber es ist nicht möglich gewesen, den Energietransfer vom Donor auf den Akzeptor komplett zu unterbinden. Neben der Untersuchung der Wanderung von Ln(III)-Ionen in einem Wirtsgitter wurden verschiedene Phasentransferreaktionen durchgeführt, um anschließende Oberflächenmodifikationen anzuwenden, damit die Anwendungen der UCNPs im biologischen Kontext prinzipiell demonstriert werden kann. Ein Ergebnis mit einem sehr vielversprechenden Liganden für die bio-medizinische Anwendung wurde in einer Publikation veröffentlicht. Dieser Ligand imitiert natürliche Mechanismen von Muschelproteinen und von Blutkoagulation, sodass die untersuchten Nanopartikel sehr effektiv eingekapselt werden. Gleichzeitig sind funktionelle Gruppen zur Bio-Funktionalisierung vorhanden. In einer Machbarkeitsstudie wurde der eingekapselte UCNP erfolgreich mit einem Farbstoff (der durch einen Biomarker ersetzt werden kann) gekoppelt und die Photolumineszenzeigenschaften des Systems untersucht.show moreshow less

Download full text files

  • SHA-512:efd05470cda31d9cab4ab8bea4ba9b3c3fefda7483ba56a2dac235b45fdc1b030270c37d8728ad304d0fabc9ee6f725298419f03872c7446c85e3d6cdbd84fcb

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Philipp U. BastianORCiD
URN:urn:nbn:de:kobv:517-opus4-551607
DOI:https://doi.org/10.25932/publishup-55160
Reviewer(s):Michael Uwe KumkeORCiDGND, Andreas TaubertORCiDGND, Niko HildebrandtORCiDGND
Supervisor(s):Michael Uwe Kumke, Rainer Haag
Publication type:Doctoral Thesis
Language:English
Publication year:2022
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2022/05/10
Release date:2022/06/23
Tag:Aufkonversion; Biomodification; Ionenmigration; Nanopartikel; Oberflächenmodifizierung
bio-modification; ion migration; nanoparticle; surface modification; upconversion
Number of pages:XII, 108, xxiii
RVK - Regensburg classification:Dissertation, Universität Potsdam, 2022
RVK - Regensburg classification:VE 9857, VE 5070
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.