Satellite Observations of the Contrasting Response of Trees and Grasses to Variations in Water Availability

  • Interannual variations in ecosystem primary productivity are dominated by water availability. Until recently, characterizing the photosynthetic response of different ecosystems to soil moisture anomalies was hampered by observational limitations. Here, we use a number of satellite-based proxies for productivity, including spectral indices, sun-induced chlorophyll fluorescence, and data-driven estimates of gross primary production, to reevaluate the relationship between terrestrial photosynthesis and water. In contrast to nonwoody vegetation, we find a resilience of forested ecosystems to reduced soil moisture. Sun-induced chlorophyll fluorescence and data-driven gross primary production indicate an increase in photosynthesis as a result of the accompanying higher amounts of light and temperature despite lowered light-use-efficiency. Conversely, remote sensing indicators of greenness reach their detection limit and largely remain stable. Our study thus highlights the differential responses of ecosystems along a tree cover gradient andInterannual variations in ecosystem primary productivity are dominated by water availability. Until recently, characterizing the photosynthetic response of different ecosystems to soil moisture anomalies was hampered by observational limitations. Here, we use a number of satellite-based proxies for productivity, including spectral indices, sun-induced chlorophyll fluorescence, and data-driven estimates of gross primary production, to reevaluate the relationship between terrestrial photosynthesis and water. In contrast to nonwoody vegetation, we find a resilience of forested ecosystems to reduced soil moisture. Sun-induced chlorophyll fluorescence and data-driven gross primary production indicate an increase in photosynthesis as a result of the accompanying higher amounts of light and temperature despite lowered light-use-efficiency. Conversely, remote sensing indicators of greenness reach their detection limit and largely remain stable. Our study thus highlights the differential responses of ecosystems along a tree cover gradient and illustrates the importance of differentiating photosynthesis indicators from those of greenness for the monitoring and understanding of ecosystems. Plain Language Summary The capacity of vegetation to thrive and to sequester carbon depends on how much water they can have access to. In this work, we evaluate how different types of satellite observations can describe the response of vegetation to changes in soil moisture over the entire planet. The first source of observation measures only the greenness of the land surface, the second measures light that is emitted by pigments in plants which are photosynthetically active (chlorophyll fluorescence), and the third are simulations of gross carbon uptake derived from machine learning techniques. For periods of water shortage all three indicate a reduction of growth in ecosystems with few trees. However, in cold boreal forests, when soil moisture is particularly low, we still detect an increase in photosynthesis due to higher light and temperature conditions, but this is not reflected in the greenness indicator. This work illustrates how lack of water is not necessarily harmful for catching carbon through photosynthesis, but to monitor this effect, we need remote sensing indicators that measure more than just how green the plants are, and fluorescence is likely a good candidate.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Sophia WaltherORCiD, Gregory DuveillerORCiD, Martin JungORCiD, Luis GuanterORCiDGND, Alessandro CescattiORCiD, Gustau Camps-VallsORCiDGND
DOI:https://doi.org/10.1029/2018GL080535
ISSN:0094-8276
ISSN:1944-8007
Title of parent work (English):Geophysical research letters
Publisher:American Geophysical Union
Place of publishing:Washington
Publication type:Article
Language:English
Date of first publication:2019/02/25
Publication year:2019
Release date:2021/04/07
Volume:46
Issue:3
Number of pages:12
First page:1429
Last Page:1440
Funding institution:Emmy Noether Programme of the German Research FoundationGerman Research Foundation (DFG) [GU 1276/1-1]; German Academic Exchange Service (DAAD)Deutscher Akademischer Austausch Dienst (DAAD); EUEuropean Union (EU) [640176]; European UnionEuropean Union (EU) [776186, 776810]; EU under the ERC [SEDAL-647423]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.