The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 1 of 4
Back to Result List

Laser ablation and matter sizing

  • The doctoral thesis presented provides a comprehensive view of laser-based ablation techniques promoted to new fields of operation, including, but not limited to, size, composition, and concentration analyses. It covers various applications of laser ablation techniques over a wide range of sizes, from single molecules all the way to aerosol particles. The research for this thesis started with broadening and deepening the field of application and the fundamental understanding of liquid-phase IR-MALDI. Here, the hybridization of ion mobility spectrometry and microfluidics was realized by using IR-MALDI as the coupling technique for the first time. The setup was used for monitoring the photocatalytic performance of the E-Z isomerization of olefins. Using this hybrid, measurement times were so drastically reduced that such photocatalyst screenings became a matter of minutes rather than hours. With this on hand, triple measurements screenings could not only be performed within ten minutes, but also with a minimum amount of resourcesThe doctoral thesis presented provides a comprehensive view of laser-based ablation techniques promoted to new fields of operation, including, but not limited to, size, composition, and concentration analyses. It covers various applications of laser ablation techniques over a wide range of sizes, from single molecules all the way to aerosol particles. The research for this thesis started with broadening and deepening the field of application and the fundamental understanding of liquid-phase IR-MALDI. Here, the hybridization of ion mobility spectrometry and microfluidics was realized by using IR-MALDI as the coupling technique for the first time. The setup was used for monitoring the photocatalytic performance of the E-Z isomerization of olefins. Using this hybrid, measurement times were so drastically reduced that such photocatalyst screenings became a matter of minutes rather than hours. With this on hand, triple measurements screenings could not only be performed within ten minutes, but also with a minimum amount of resources highlighting its potential as a green chemistry alternative to batch-sized reactions. Along the optimizing process of the IR-MALDI source for microfluidics came its application for another liquid sample supply method, the hanging drop. This demarcated one of the first applications of IR-MALDI for the charging of sub-micron particles directly from suspensions via their gas-phase transfer, followed by their characterization with differential mobility analysis. Given the high spectral quality of the data up to octuply charged particles became experimentally accessible, this laid the foundation for deriving a new charge distribution model for IR-MALDI in that size regime. Moving on to even larger analyte sizes, LIBS and LII were employed as ablation techniques for the solid phase, namely the aerosol particles themselves. Both techniques produce light-emitting events and were used to quantify and classify different aerosols. The unique configuration of stroboscopic imaging, photoacoustics, LII, and LIBS measurements opened new realms for analytical synergies and their potential application in industry. The concept of using low fluences, below 100 J/cm2, and high repetition rates of up to 500 Hz for LIBS makes for an excellent phase-selective LIBS setup. This concept was combined with a new approach to the photoacoustic normalization of LIBS. Also, it was possible to acquire statistically relevant amounts of data in a matter of seconds, showing its potential as a real-time optimization technique. On the same time axis, but at much lower fluences, LII was used with a similar methodology to quickly quantify and classify airborne particles of different compositions. For the first time, aerosol particles were evaluated on their LII susceptibility by using a fluence screening approach.show moreshow less
  • Die vorliegende kumulative Dissertation hat die lasergestützte Flüssig- und Festphasen-Ablation (Ab- tragung) zur Molekül- und Partikelanalyse zur Grundlage. Mittels Infrarotstrahlung wurden die Analyten, vom molekularen bis zum Mikrometergröÿenbereich, in die Gasphase überführt, ionisiert oder geladen und anschließend durch spektrometrische beziehungsweise spektroskopische Analysemethoden identifiziert und quantifiziert. Eingangs wurden IR-MALDIs (infrared laser-assisted matrix dispersion ionization) Anwendungsbereiche als Kopplungsmethode etabliert sowie fundamentale Aspekte des Ionisationsprozesses innerhalb der IR-MALDI beleuchtet. Die als Kopplungsmethode eingesetzte IR-MALDI ermöglichte die erstmalige Zusammenführung eines Mikrochip-Reaktors mit einem Niederdruck-Ionenmobilitätsspektrometer. Dies geschah über die IR-MALDI eines vom Mikrochip ejektierten Flüssigkeitsmikrostrahls und wurde für die Verlaufsbeoachtung photokatalysierter Isomerisierungsreaktionen verwendet. Dieses hybride Konzept aus Mikrochip-Reaktor undDie vorliegende kumulative Dissertation hat die lasergestützte Flüssig- und Festphasen-Ablation (Ab- tragung) zur Molekül- und Partikelanalyse zur Grundlage. Mittels Infrarotstrahlung wurden die Analyten, vom molekularen bis zum Mikrometergröÿenbereich, in die Gasphase überführt, ionisiert oder geladen und anschließend durch spektrometrische beziehungsweise spektroskopische Analysemethoden identifiziert und quantifiziert. Eingangs wurden IR-MALDIs (infrared laser-assisted matrix dispersion ionization) Anwendungsbereiche als Kopplungsmethode etabliert sowie fundamentale Aspekte des Ionisationsprozesses innerhalb der IR-MALDI beleuchtet. Die als Kopplungsmethode eingesetzte IR-MALDI ermöglichte die erstmalige Zusammenführung eines Mikrochip-Reaktors mit einem Niederdruck-Ionenmobilitätsspektrometer. Dies geschah über die IR-MALDI eines vom Mikrochip ejektierten Flüssigkeitsmikrostrahls und wurde für die Verlaufsbeoachtung photokatalysierter Isomerisierungsreaktionen verwendet. Dieses hybride Konzept aus Mikrochip-Reaktor und Niederdruck-Ionenmobilitätsspektrometer hatte eine erhebliche Reduktion der benötigten Messzeit zur Folge. Die Messzeit konnte, im Vergleich zur mehrstündigen Verlaufsbeobachtung von Reaktionen im Kolben, auf nur wenige Minuten verringert werden. Hiermit war es nun also nicht nur möglich Dreifachmessungen innerhalb von nur zehn Minuten auszuführen, sondern es wurde auch nur ein kleinster Bruchteil der sonst üblichen Rohstoffe benötigt, was wiederum zeigt, welches Potential diese systemische Miniaturisierung für nachhaltige Chemie hat. Entlang der Entwicklung dieser Flüssigkeitsstrahlkopplung konnte IR-MALDI auch auf einen Aufbau mit hängendem Tropfen übertragen werden. Hierdurch kam es zu einer der ersten Gasphasenanalysen von Submikron-Partikeln direkt aus einer Suspension heraus. Nachdem diese durch IR-MALDI mit entsprechender Ladung versehen wurden, konnten sie mittels differentieller Mobilitätsanalyse charakterisiert werden. Durch die hohe spektrale Auflösung der Methode war eine eindeutige Zuordnung von bis zu acht Ladungen auf einem Partikel möglich. Folglich lieferte dies die Grundlage zur Evaluierung bestehender IR-MALDI-Ladungsverteilungsmodelle und schlussendlich zur Entwicklung eines neuen Ladungsverteilungsmodels. Anschließend wurde die Ablation auf noch größere Partikel, auf denen die Ablation direkt und damit in der festen Phase stattfinden konnte, übertragen. Hierbei fanden LIBS (laser-induced break-down spectroscopy) und LII (laser-induced incandescence) ihre Anwendung in der Aerosolquantifizierung sowie in deren Identifizierung beziehungsweise Klassierung. Die vielschichtige Methodenkonfiguration bestehend aus Stroboskopie, Photoakustik, LII und LIBS eröffnete neue Dimensionen für analytische Synergien. In diesem Zusammenhang wurde ein neuer Ansatz zur photoakustischen Normierung von Einzelsignalen in der LIBS entwickelt. Als weiteres Alleinstellungsmerkmal wurde LIBS mit niedrigen Fluenzen (Energie pro Fläche) von unter 100 J/cm2, somit also phasenselektiv, und hohen Wiederholungsraten von bis zu 500 Hz verwendet. Somit konnte innerhalb von Sekunden eine statistisch relevante Menge an Daten erhoben werden, nahezu in Echtzeit, was wiederum Anwendungspotentiale in Industrieprozessen aufzeigt. Auf derselben Zeitskala, jedoch bei deutlich geringeren Fluenzen (<1.5 J/cm2), wurde auch die LII für Partikelzählung verwendet. Hierbei wurde erstmals das Potential der LII zur Klassierung von Partikeln im Rahmen eines Fluenz-Screenings gezeigt.show moreshow less

Download full text files

  • SHA-512:83ca518cc2be9dec2dc708246008ace4ed2da24c867f566a70c3c24865a3866ebe105d24044d739a7a2010cb81821ee2b4a28f9baf23dc0f2bd5d496350de823

Export metadata

Metadaten
Author details:Christian PrüfertORCiD
URN:urn:nbn:de:kobv:517-opus4-559745
DOI:https://doi.org/10.25932/publishup-55974
Subtitle (English):a focused view on molecules, sub-micron particles, and aerosols
Reviewer(s):Hans-Gerd LöhmannsröbenORCiDGND, Stefanie SielemannORCiDGND, Michael LinscheidORCiDGND
Supervisor(s):Hans-Gerd Löhmannsröben, Stefanie Sielemann, Michael Linscheid
Publication type:Doctoral Thesis
Language:English
Year of first publication:2022
Publication year:2022
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2022/04/20
Release date:2022/10/04
Tag:Differentielle Mobilitätsanalyse (DMA); Ionenmobilitätsspektrometry (IMS); Laserinduzierte Inkandeszenz (LII); Laserinduzierte Plasmaspektroskopie (LIBS); Matrix-unterstützte Laser-Desorption/Ionisation (IR-MALDI)
Differential mobility analysis (DMA); Infrared matrix-assisted laser desorption ionization (IR-MALDI); Ion mobility spectrometry (IMS); laser-induced breakdown spectroscopy (LIBS); laser-induced incandescence (LII)
Number of pages:IX, 96
RVK - Regensburg classification:VE 9907, VE 9537
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
MSC classification:92-XX BIOLOGY AND OTHER NATURAL SCIENCES
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.