The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 1 of 10
Back to Result List

Concepts and techniques for processing and rendering of massive 3D point clouds

Konzepte und Techniken für die Verarbeitung und das Rendering von Massiven 3D-Punktwolken

  • Remote sensing technology, such as airborne, mobile, or terrestrial laser scanning, and photogrammetric techniques, are fundamental approaches for efficient, automatic creation of digital representations of spatial environments. For example, they allow us to generate 3D point clouds of landscapes, cities, infrastructure networks, and sites. As essential and universal category of geodata, 3D point clouds are used and processed by a growing number of applications, services, and systems such as in the domains of urban planning, landscape architecture, environmental monitoring, disaster management, virtual geographic environments as well as for spatial analysis and simulation. While the acquisition processes for 3D point clouds become more and more reliable and widely-used, applications and systems are faced with more and more 3D point cloud data. In addition, 3D point clouds, by their very nature, are raw data, i.e., they do not contain any structural or semantics information. Many processing strategies common to GIS such as derivingRemote sensing technology, such as airborne, mobile, or terrestrial laser scanning, and photogrammetric techniques, are fundamental approaches for efficient, automatic creation of digital representations of spatial environments. For example, they allow us to generate 3D point clouds of landscapes, cities, infrastructure networks, and sites. As essential and universal category of geodata, 3D point clouds are used and processed by a growing number of applications, services, and systems such as in the domains of urban planning, landscape architecture, environmental monitoring, disaster management, virtual geographic environments as well as for spatial analysis and simulation. While the acquisition processes for 3D point clouds become more and more reliable and widely-used, applications and systems are faced with more and more 3D point cloud data. In addition, 3D point clouds, by their very nature, are raw data, i.e., they do not contain any structural or semantics information. Many processing strategies common to GIS such as deriving polygon-based 3D models generally do not scale for billions of points. GIS typically reduce data density and precision of 3D point clouds to cope with the sheer amount of data, but that results in a significant loss of valuable information at the same time. This thesis proposes concepts and techniques designed to efficiently store and process massive 3D point clouds. To this end, object-class segmentation approaches are presented to attribute semantics to 3D point clouds, used, for example, to identify building, vegetation, and ground structures and, thus, to enable processing, analyzing, and visualizing 3D point clouds in a more effective and efficient way. Similarly, change detection and updating strategies for 3D point clouds are introduced that allow for reducing storage requirements and incrementally updating 3D point cloud databases. In addition, this thesis presents out-of-core, real-time rendering techniques used to interactively explore 3D point clouds and related analysis results. All techniques have been implemented based on specialized spatial data structures, out-of-core algorithms, and GPU-based processing schemas to cope with massive 3D point clouds having billions of points. All proposed techniques have been evaluated and demonstrated their applicability to the field of geospatial applications and systems, in particular for tasks such as classification, processing, and visualization. Case studies for 3D point clouds of entire cities with up to 80 billion points show that the presented approaches open up new ways to manage and apply large-scale, dense, and time-variant 3D point clouds as required by a rapidly growing number of applications and systems.show moreshow less
  • Fernerkundungstechnologien wie luftgestütztes, mobiles oder terrestrisches Laserscanning und photogrammetrische Techniken sind grundlegende Ansätze für die effiziente, automatische Erstellung von digitalen Repräsentationen räumlicher Umgebungen. Sie ermöglichen uns zum Beispiel die Erzeugung von 3D-Punktwolken für Landschaften, Städte, Infrastrukturnetze und Standorte. 3D-Punktwolken werden als wesentliche und universelle Kategorie von Geodaten von einer wachsenden Anzahl an Anwendungen, Diensten und Systemen genutzt und verarbeitet, zum Beispiel in den Bereichen Stadtplanung, Landschaftsarchitektur, Umweltüberwachung, Katastrophenmanagement, virtuelle geographische Umgebungen sowie zur räumlichen Analyse und Simulation. Da die Erfassungsprozesse für 3D-Punktwolken immer zuverlässiger und verbreiteter werden, sehen sich Anwendungen und Systeme mit immer größeren 3D-Punktwolken-Daten konfrontiert. Darüber hinaus enthalten 3D-Punktwolken als Rohdaten von ihrer Art her keine strukturellen oder semantischen Informationen.Fernerkundungstechnologien wie luftgestütztes, mobiles oder terrestrisches Laserscanning und photogrammetrische Techniken sind grundlegende Ansätze für die effiziente, automatische Erstellung von digitalen Repräsentationen räumlicher Umgebungen. Sie ermöglichen uns zum Beispiel die Erzeugung von 3D-Punktwolken für Landschaften, Städte, Infrastrukturnetze und Standorte. 3D-Punktwolken werden als wesentliche und universelle Kategorie von Geodaten von einer wachsenden Anzahl an Anwendungen, Diensten und Systemen genutzt und verarbeitet, zum Beispiel in den Bereichen Stadtplanung, Landschaftsarchitektur, Umweltüberwachung, Katastrophenmanagement, virtuelle geographische Umgebungen sowie zur räumlichen Analyse und Simulation. Da die Erfassungsprozesse für 3D-Punktwolken immer zuverlässiger und verbreiteter werden, sehen sich Anwendungen und Systeme mit immer größeren 3D-Punktwolken-Daten konfrontiert. Darüber hinaus enthalten 3D-Punktwolken als Rohdaten von ihrer Art her keine strukturellen oder semantischen Informationen. Viele GIS-übliche Verarbeitungsstrategien, wie die Ableitung polygonaler 3D-Modelle, skalieren in der Regel nicht für Milliarden von Punkten. GIS reduzieren typischerweise die Datendichte und Genauigkeit von 3D-Punktwolken, um mit der immensen Datenmenge umgehen zu können, was aber zugleich zu einem signifikanten Verlust wertvoller Informationen führt. Diese Arbeit präsentiert Konzepte und Techniken, die entwickelt wurden, um massive 3D-Punktwolken effizient zu speichern und zu verarbeiten. Hierzu werden Ansätze für die Objektklassen-Segmentierung vorgestellt, um 3D-Punktwolken mit Semantik anzureichern; so lassen sich beispielsweise Gebäude-, Vegetations- und Bodenstrukturen identifizieren, wodurch die Verarbeitung, Analyse und Visualisierung von 3D-Punktwolken effektiver und effizienter durchführbar werden. Ebenso werden Änderungserkennungs- und Aktualisierungsstrategien für 3D-Punktwolken vorgestellt, mit denen Speicheranforderungen reduziert und Datenbanken für 3D-Punktwolken inkrementell aktualisiert werden können. Des Weiteren beschreibt diese Arbeit Out-of-Core Echtzeit-Rendering-Techniken zur interaktiven Exploration von 3D-Punktwolken und zugehöriger Analyseergebnisse. Alle Techniken wurden mit Hilfe spezialisierter räumlicher Datenstrukturen, Out-of-Core-Algorithmen und GPU-basierter Verarbeitungs-schemata implementiert, um massiven 3D-Punktwolken mit Milliarden von Punkten gerecht werden zu können. Alle vorgestellten Techniken wurden evaluiert und die Anwendbarkeit für Anwendungen und Systeme, die mit raumbezogenen Daten arbeiten, wurde insbesondere für Aufgaben wie Klassifizierung, Verarbeitung und Visualisierung demonstriert. Fallstudien für 3D-Punktwolken von ganzen Städten mit bis zu 80 Milliarden Punkten zeigen, dass die vorgestellten Ansätze neue Wege zur Verwaltung und Verwendung von großflächigen, dichten und zeitvarianten 3D-Punktwolken eröffnen, die von einer wachsenden Anzahl an Anwendungen und Systemen benötigt werden.show moreshow less

Download full text files

Export metadata

Metadaten
Author:Rico RichterORCiD
URN:urn:nbn:de:kobv:517-opus4-423304
DOI:https://doi.org/10.25932/publishup-42330
Advisor:Jürgen Döllner
Document Type:Doctoral Thesis
Language:English
Year of Completion:2018
Publishing Institution:Universität Potsdam
Granting Institution:Universität Potsdam
Date of final exam:2018/11/16
Release Date:2019/02/11
Tag:3D-Punktwolken; 3D-Visualisierung; Big Data; Echtzeit-Rendering; Fernerkundung; GPU; Klassifizierung; Laserscanning; LiDAR; Mobile-Mapping; Veränderungsanalyse
3D point clouds; 3D visualization; Big Data; GPU; LiDAR; change detection; classification; laserscanning; mobile mapping; real-time rendering; remote sensing
Pagenumber:v, 131
RVK - Regensburg Classification:ST 630, RB 10104
Organizational units:Digital Engineering Fakultät / Hasso-Plattner-Institut für Digital Engineering GmbH
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht