• search hit 1 of 3
Back to Result List

Advanced tools and methods for treewidth-based problem solving

  • In the last decades, there was a notable progress in solving the well-known Boolean satisfiability (Sat) problem, which can be witnessed by powerful Sat solvers. One of the reasons why these solvers are so fast are structural properties of instances that are utilized by the solver’s interna. This thesis deals with the well-studied structural property treewidth, which measures the closeness of an instance to being a tree. In fact, there are many problems parameterized by treewidth that are solvable in polynomial time in the instance size when parameterized by treewidth. In this work, we study advanced treewidth-based methods and tools for problems in knowledge representation and reasoning (KR). Thereby, we provide means to establish precise runtime results (upper bounds) for canonical problems relevant to KR. Then, we present a new type of problem reduction, which we call decomposition-guided (DG) that allows us to precisely monitor the treewidth when reducing from one problem to another problem. This new reduction type will be theIn the last decades, there was a notable progress in solving the well-known Boolean satisfiability (Sat) problem, which can be witnessed by powerful Sat solvers. One of the reasons why these solvers are so fast are structural properties of instances that are utilized by the solver’s interna. This thesis deals with the well-studied structural property treewidth, which measures the closeness of an instance to being a tree. In fact, there are many problems parameterized by treewidth that are solvable in polynomial time in the instance size when parameterized by treewidth. In this work, we study advanced treewidth-based methods and tools for problems in knowledge representation and reasoning (KR). Thereby, we provide means to establish precise runtime results (upper bounds) for canonical problems relevant to KR. Then, we present a new type of problem reduction, which we call decomposition-guided (DG) that allows us to precisely monitor the treewidth when reducing from one problem to another problem. This new reduction type will be the basis for a long-open lower bound result for quantified Boolean formulas and allows us to design a new methodology for establishing runtime lower bounds for problems parameterized by treewidth. Finally, despite these lower bounds, we provide an efficient implementation of algorithms that adhere to treewidth. Our approach finds suitable abstractions of instances, which are subsequently refined in a recursive fashion, and it uses Sat solvers for solving subproblems. It turns out that our resulting solver is quite competitive for two canonical counting problems related to Sat.show moreshow less
  • In den letzten Jahrzehnten konnte ein beachtlicher Fortschritt im Bereich der Aussagenlogik verzeichnet werden. Dieser äußerte sich dadurch, dass für das wichtigste Problem in diesem Bereich, genannt „Sat“, welches sich mit der Fragestellung befasst, ob eine gegebene aussagenlogische Formel erfüllbar ist oder nicht, überwältigend schnelle Computerprogramme („Solver“) entwickelt werden konnten. Interessanterweise liefern diese Solver eine beeindruckende Leistung, weil sie oft selbst Probleminstanzen mit mehreren Millionen von Variablen spielend leicht lösen können. Auf der anderen Seite jedoch glaubt man in der Wissenschaft weitgehend an die Exponentialzeithypothese (ETH), welche besagt, dass man im schlimmsten Fall für das Lösen einer Instanz in diesem Bereich exponentielle Laufzeit in der Anzahl der Variablen benötigt. Dieser vermeintliche Widerspruch ist noch immer nicht vollständig geklärt, denn wahrscheinlich gibt es viele ineinandergreifende Gründe für die Schnelligkeit aktueller Sat Solver. Einer dieser Gründe befasst sichIn den letzten Jahrzehnten konnte ein beachtlicher Fortschritt im Bereich der Aussagenlogik verzeichnet werden. Dieser äußerte sich dadurch, dass für das wichtigste Problem in diesem Bereich, genannt „Sat“, welches sich mit der Fragestellung befasst, ob eine gegebene aussagenlogische Formel erfüllbar ist oder nicht, überwältigend schnelle Computerprogramme („Solver“) entwickelt werden konnten. Interessanterweise liefern diese Solver eine beeindruckende Leistung, weil sie oft selbst Probleminstanzen mit mehreren Millionen von Variablen spielend leicht lösen können. Auf der anderen Seite jedoch glaubt man in der Wissenschaft weitgehend an die Exponentialzeithypothese (ETH), welche besagt, dass man im schlimmsten Fall für das Lösen einer Instanz in diesem Bereich exponentielle Laufzeit in der Anzahl der Variablen benötigt. Dieser vermeintliche Widerspruch ist noch immer nicht vollständig geklärt, denn wahrscheinlich gibt es viele ineinandergreifende Gründe für die Schnelligkeit aktueller Sat Solver. Einer dieser Gründe befasst sich weitgehend mit strukturellen Eigenschaften von Probleminstanzen, die wohl indirekt und intern von diesen Solvern ausgenützt werden. Diese Dissertation beschäftigt sich mit solchen strukturellen Eigenschaften, nämlich mit der sogenannten Baumweite. Die Baumweite ist sehr gut erforscht und versucht zu messen, wie groß der Abstand von Probleminstanzen zu Bäumen ist (Baumnähe). Allerdings ist dieser Parameter sehr generisch und bei Weitem nicht auf Problemstellungen der Aussagenlogik beschränkt. Tatsächlich gibt es viele weitere Probleme, die parametrisiert mit Baumweite in polynomieller Zeit gelöst werden können. Interessanterweise gibt es auch viele Probleme in der Wissensrepräsentation (KR), von denen man davon ausgeht, dass sie härter sind als das Problem Sat, die bei beschränkter Baumweite in polynomieller Zeit gelöst werden können. Ein prominentes Beispiel solcher Probleme ist das Problem QSat, welches sich für die Gültigkeit einer gegebenen quantifizierten, aussagenlogischen Formel (QBF), das sind aussagenlogische Formeln, wo gewisse Variablen existenziell bzw. universell quantifiziert werden können, befasst. Bemerkenswerterweise wird allerdings auch im Zusammenhang mit Baumweite, ähnlich zu Methoden der klassischen Komplexitätstheorie, die tatsächliche Komplexität (Härte) solcher Problemen quantifiziert, wo man die exakte Laufzeitabhängigkeit beim Problemlösen in der Baumweite (Stufe der Exponentialität) beschreibt. Diese Arbeit befasst sich mit fortgeschrittenen, Baumweite-basierenden Methoden und Werkzeugen für Probleme der Wissensrepräsentation und künstlichen Intelligenz (AI). Dabei präsentieren wir Methoden, um präzise Laufzeitresultate (obere Schranken) für prominente Fragmente der Antwortmengenprogrammierung (ASP), welche ein kanonisches Paradigma zum Lösen von Problemen der Wissensrepräsentation darstellt, zu erhalten. Unsere Resultate basieren auf dem Konzept der dynamischen Programmierung, die angeleitet durch eine sogenannte Baumzerlegung und ähnlich dem Prinzip „Teile-und-herrsche“ funktioniert. Solch eine Baumzerlegung ist eine konkrete, strukturelle Zerlegung einer Probleminstanz, die sich stark an der Baumweite orientiert. Des Weiteren präsentieren wir einen neuen Typ von Problemreduktion, den wir als „decomposition-guided (DG)“, also „zerlegungsangeleitet“, bezeichnen. Dieser Reduktionstyp erlaubt es, Baumweiteerhöhungen und -verringerungen während einer Problemreduktion von einem bestimmten Problem zu einem anderen Problem präzise zu untersuchen und zu kontrollieren. Zusätzlich ist dieser neue Reduktionstyp die Basis, um ein lange offen gebliebenes Resultat betreffend quantifizierter, aussagenlogischer Formeln zu zeigen. Tatsächlich sind wir damit in der Lage, präzise untere Schranken, unter der Annahme der Exponentialzeithypothese, für das Problem QSat bei beschränkter Baumweite zu zeigen. Genauer gesagt können wir mit diesem Konzept der DG Reduktionen zeigen, dass das Problem QSat, beschränkt auf Quantifizierungsrang ` und parametrisiert mit Baumweite k, im Allgemeinen nicht besser als in einer Laufzeit, die `-fach exponentiell in der Baumweite und polynomiell in der Instanzgröße ist1, lösen. Dieses Resultat hebt auf nicht-inkrementelle Weise ein bekanntes Ergebnis für Quantifizierungsrang 2 auf beliebige Quantifizierungsränge, allerdings impliziert es auch sehr viele weitere Konsequenzen. Das Resultat über die untere Schranke des Problems QSat erlaubt es, eine neue Methodologie zum Zeigen unterer Schranken einer Vielzahl von Problemen der Wissensrepräsentation und künstlichen Intelligenz, zu etablieren. In weiterer Konsequenz können wir damit auch zeigen, dass die oberen Schranken sowie die DG Reduktionen dieser Arbeit unter der Hypothese ETH „eng“ sind, d.h., sie können wahrscheinlich nicht mehr signifikant verbessert werden. Die Ergebnisse betreffend der unteren Schranken für QSat und die dazugehörige Methodologie konstituieren in gewisser Weise eine Hierarchie von über Baumweite parametrisierte Laufzeitklassen. Diese Laufzeitklassen können verwendet werden, um die Härte von Problemen für das Ausnützen von Baumweite zu quantifizieren und diese entsprechend ihrer Laufzeitabhängigkeit bezüglich Baumweite zu kategorisieren. Schlussendlich und trotz der genannten Resultate betreffend unterer Schranken sind wir im Stande, eine effiziente Implementierung von Algorithmen basierend auf dynamischer Programmierung, die entlang einer Baumzerlegung angeleitet wird, zur Verfügung zu stellen. Dabei funktioniert unser Ansatz dahingehend, indem er probiert, passende Abstraktionen von Instanzen zu finden, die dann im Endeffekt sukzessive und auf rekursive Art und Weise verfeinert und verbessert werden. Inspiriert durch die enorme Effizienz und Effektivität der Sat Solver, ist unsere Implementierung ein hybrider Ansatz, weil sie den starken Gebrauch von Sat Solvern zum Lösen diverser Subprobleme, die während der dynamischen Programmierung auftreten, pflegt. Dabei stellt sich heraus, dass der resultierende Solver unserer Implementierung im Bezug auf Effizienz beim Lösen von zwei kanonischen, Sat-verwandten Zählproblemen mit bestehenden Solvern locker mithalten kann. Tatsächlich sind wir im Stande, Instanzen, wo die oberen Schranken von Baumweite 260 übersteigen, zu lösen. Diese überraschende Beobachtung zeigt daher, dass Baumweite ein wichtiger Parameter sein könnte, der wohl in modernen Designs von Solvern berücksichtigt werden sollte.show moreshow less

Download full text files

  • SHA-512:df88fefb90800dd62c1b3d086c40ecbd6528713c13108add8e98ddd69d760967919470ebaf4dc9c26b7831a1ed9a82b414de4d31e7430263c392708cfe8096e8

Export metadata

Metadaten
Author details:Markus HecherORCiD
URN:urn:nbn:de:kobv:517-opus4-512519
DOI:https://doi.org/10.25932/publishup-51251
Reviewer(s):Mirosław Truszczynski, Heribert VollmerORCiDGND
Supervisor(s):Stefan Woltran, Torsten H. Schaub
Publication type:Doctoral Thesis
Language:English
Date of first publication:2021/08/04
Publication year:2021
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2021/06/01
Release date:2021/08/04
Tag:Algorithmen; Antwortmengenprogrammierung; Baumweite; Dynamische Programmierung; Exponentialzeit Hypothese; Komplexitätstheorie; Künstliche Intelligenz; Parametrisierte Komplexität; Untere Schranken; Wissensrepräsentation und Schlussfolgerung
Algorithms; Answer Set Programming; Artificial Intelligence; Computational Complexity; Dynamic Programming; Exponential Time Hypothesis; Knowledge Representation and Reasoning; Lower Bounds; Parameterized Complexity; Treewidth
Number of pages:xv, 184
RVK - Regensburg classification:ST 302, SK 950
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Informatik und Computational Science
CCS classification:F. Theory of Computation / F.2 ANALYSIS OF ALGORITHMS AND PROBLEM COMPLEXITY (B.6-7, F.1.3) / F.2.0 General
F. Theory of Computation / F.4 MATHEMATICAL LOGIC AND FORMAL LANGUAGES / F.4.1 Mathematical Logic (F.1.1, I.2.2-4) / Logic and constraint programming (REVISED)
G. Mathematics of Computing / G.2 DISCRETE MATHEMATICS / G.2.2 Graph Theory (F.2.2) / Trees
I. Computing Methodologies / I.2 ARTIFICIAL INTELLIGENCE / I.2.4 Knowledge Representation Formalisms and Methods (F.4.1)
DDC classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 000 Informatik, Informationswissenschaft, allgemeine Werke
0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
6 Technik, Medizin, angewandte Wissenschaften / 60 Technik / 600 Technik, Technologie
MSC classification:03-XX MATHEMATICAL LOGIC AND FOUNDATIONS / 03Bxx General logic / 03B05 Classical propositional logic
03-XX MATHEMATICAL LOGIC AND FOUNDATIONS / 03Bxx General logic / 03B42 Logics of knowledge and belief (including belief change)
03-XX MATHEMATICAL LOGIC AND FOUNDATIONS / 03Dxx Computability and recursion theory / 03D15 Complexity of computation (including implicit computational complexity) [See also 68Q15, 68Q17]
68-XX COMPUTER SCIENCE (For papers involving machine computations and programs in a specific mathematical area, see Section {04 in that areag 68-00 General reference works (handbooks, dictionaries, bibliographies, etc.) / 68Txx Artificial intelligence / 68T30 Knowledge representation
JEL classification:C Mathematical and Quantitative Methods / C0 General / C02 Mathematical Methods
C Mathematical and Quantitative Methods / C6 Mathematical Methods and Programming / C65 Miscellaneous Mathematical Tools
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.