• search hit 18 of 25
Back to Result List

Phosphorylation of polyglycans, especially glycogen and starch

Phosphorylierung von Polysacchariden, insbesondere bei Glykogen und Stärke

  • Functional metabolism of storage carbohydrates is vital to plants and animals. The water-soluble glycogen in animal cells and the amylopectin which is the major component of water-insoluble starch granules residing in plant plastids are chemically similar as they consist of α-1,6 branched α-1,4 glucan chains. Synthesis and degradation of transitory starch and of glycogen are accomplished by a set of enzymatic activities that to some extend are also similar in plants and animals. Chain elongation, branching, and debranching are achieved by synthases, branching enzymes, and debranching enzymes, respectively. Similarly, both types of polyglucans contain low amounts of phosphate esters whose abundance varies depending on species and organs. Starch is selectively phosphorylated by at least two dikinases (GWD and PWD) at the glucosyl carbons C6 and C3 and dephosphorylated by the phosphatase SEX4 and SEX4-like enzymes. In Arabidopsis insufficiency in starch phosphorylation or dephosphorylation results in largely impaired starch turnover,Functional metabolism of storage carbohydrates is vital to plants and animals. The water-soluble glycogen in animal cells and the amylopectin which is the major component of water-insoluble starch granules residing in plant plastids are chemically similar as they consist of α-1,6 branched α-1,4 glucan chains. Synthesis and degradation of transitory starch and of glycogen are accomplished by a set of enzymatic activities that to some extend are also similar in plants and animals. Chain elongation, branching, and debranching are achieved by synthases, branching enzymes, and debranching enzymes, respectively. Similarly, both types of polyglucans contain low amounts of phosphate esters whose abundance varies depending on species and organs. Starch is selectively phosphorylated by at least two dikinases (GWD and PWD) at the glucosyl carbons C6 and C3 and dephosphorylated by the phosphatase SEX4 and SEX4-like enzymes. In Arabidopsis insufficiency in starch phosphorylation or dephosphorylation results in largely impaired starch turnover, starch accumulation, and often in retardation of growth. In humans the progressive neurodegenerative epilepsy, Lafora disease, is the result of a defective enzyme (laforin) that is functional equivalent to the starch phosphatase SEX4 and capable of glycogen dephosphorylation. Patients lacking laforin progressively accumulate unphysiologically structured insoluble glycogen-derived particles (Lafora bodies) in many tissues including brain. Previous results concerning the carbon position of glycogen phosphate are contradictory. Currently it is believed that glycogen is esterified exclusively at the carbon positions C2 and C3 and that the monophosphate esters, being incorporated via a side reaction of glycogen synthase (GS), lack any specific function but are rather an enzymatic error that needs to be corrected. In this study a versatile and highly sensitive enzymatic cycling assay was established that enables quantification of very small G6P amounts in the presence of high concentrations of non-target compounds as present in hydrolysates of polysaccharides, such as starch, glycogen, or cytosolic heteroglycans in plants. Following validation of the G6P determination by analyzing previously characterized starches G6P was quantified in hydrolysates of various glycogen samples and in plant heteroglycans. Interestingly, glucosyl C6 phosphate is present in all glycogen preparations examined, the abundance varying between glycogens of different sources. Additionally, it was shown that carbon C6 is severely hyperphosphorylated in glycogen of Lafora disease mouse model and that laforin is capable of removing C6 phosphate from glycogen. After enrichment of phosphoglucans from amylolytically degraded glycogen, several techniques of two-dimensional NMR were applied that independently proved the existence of 6-phosphoglucosyl residues in glycogen and confirmed the recently described phosphorylation sites C2 and C3. C6 phosphate is neither Lafora disease- nor species-, or organ-specific as it was demonstrated in liver glycogen from laforin-deficient mice and in that of wild type rabbit skeletal muscle. The distribution of 6-phosphoglucosyl residues was analyzed in glycogen molecules and has been found to be uneven. Gradual degradation experiments revealed that C6 phosphate is more abundant in central parts of the glycogen molecules and in molecules possessing longer glucan chains. Glycogen of Lafora disease mice consistently contains a higher proportion of longer chains while most short chains were reduced as compared to wild type. Together with results recently published (Nitschke et al., 2013) the findings of this work completely unhinge the hypothesis of GS-mediated phosphate incorporation as the respective reaction mechanism excludes phosphorylation of this glucosyl carbon, and as it is difficult to explain an uneven distribution of C6 phosphate by a stochastic event. Indeed the results rather point to a specific function of 6-phosphoglucosyl residues in the metabolism of polysaccharides as they are present in starch, glycogen, and, as described in this study, in heteroglycans of Arabidopsis. In the latter the function of phosphate remains unclear but this study provides evidence that in starch and glycogen it is related to branching. Moreover a role of C6 phosphate in the early stages of glycogen synthesis is suggested. By rejecting the current view on glycogen phosphate to be a stochastic biochemical error the results permit a wider view on putative roles of glycogen phosphate and on alternative biochemical ways of glycogen phosphorylation which for many reasons are likely to be mediated by distinct phosphorylating enzymes as it is realized in starch metabolism of plants. Better understanding of the enzymology underlying glycogen phosphorylation implies new possibilities of Lafora disease treatment.show moreshow less
  • Pflanzen und Tiere speichern Glukose in hochmolekularen Kohlenhydraten, um diese bei Bedarf unter anderem zur Gewinnung von Energie zu nutzen. Amylopectin, der größte Bestandteil des pflanzlichen Speicherkohlenhydrats Stärke, und das tierische Äquivalent Glykogen sind chemisch betrachtet ähnlich, denn sie bestehen aus verzweigten Ketten, deren Bausteine (Glukosylreste) auf identische Weise miteinander verbunden sind. Zudem kommen in beiden Kohlenhydraten kleine aber ähnliche Mengen von Phosphatgruppen vor, die offenbar eine tragende Rolle in Pflanzen und Tieren spielen. Ist in Pflanzen der Einbau oder die Entfernung von Phosphatgruppen in bzw. aus Stärke gestört, so ist oft der gesamte Stärkestoffwechsel beeinträchtigt. Dies zeigt sich unter anderem in der übermäßigen Akkumulation von Stärke und in Wachstumsverzögerungen der gesamten Pflanze. Beim Menschen und anderen Säugern beruht eine schwere Form der Epilepsie (Lafora disease) auf einer Störung des Glykogenstoffwechsels. Sie wird durch das erblich bedingte Fehlen eines EnzymsPflanzen und Tiere speichern Glukose in hochmolekularen Kohlenhydraten, um diese bei Bedarf unter anderem zur Gewinnung von Energie zu nutzen. Amylopectin, der größte Bestandteil des pflanzlichen Speicherkohlenhydrats Stärke, und das tierische Äquivalent Glykogen sind chemisch betrachtet ähnlich, denn sie bestehen aus verzweigten Ketten, deren Bausteine (Glukosylreste) auf identische Weise miteinander verbunden sind. Zudem kommen in beiden Kohlenhydraten kleine aber ähnliche Mengen von Phosphatgruppen vor, die offenbar eine tragende Rolle in Pflanzen und Tieren spielen. Ist in Pflanzen der Einbau oder die Entfernung von Phosphatgruppen in bzw. aus Stärke gestört, so ist oft der gesamte Stärkestoffwechsel beeinträchtigt. Dies zeigt sich unter anderem in der übermäßigen Akkumulation von Stärke und in Wachstumsverzögerungen der gesamten Pflanze. Beim Menschen und anderen Säugern beruht eine schwere Form der Epilepsie (Lafora disease) auf einer Störung des Glykogenstoffwechsels. Sie wird durch das erblich bedingte Fehlen eines Enzyms ausgelöst, das Phosphatgruppen aus dem Glykogen entfernt. Während die Enzyme, die für die Entfernung des Phosphats aus Stärke und Glykogen verantwortlich sind, hohe Ähnlichkeit aufweisen, ist momentan die Ansicht weit verbreitet, dass der Einbau von Phosphat in beide Speicherkohlenhydrate auf höchst unterschiedliche Weise erfolgt. In Pflanzen sind zwei Enzyme bekannt, die Phosphatgruppen an unterschiedlichen Stellen in Glukosylreste einbauen (Kohlenstoffatome 6 und 3). In Tieren soll eine seltene, unvermeidbare und zufällig auftretende Nebenreaktion eines Enzyms, das eigentlich die Ketten des Glykogens verlängert (Glykogen-Synthase), den Einbau von Phosphat bewirken, der somit als unwillkürlich gilt und weithin als „biochemischer Fehler“ (mit fatalen Konsequenzen bei ausbleibender Korrektur) betrachtet wird. In den Glukosylresten des Glykogens sollen ausschließlich die C-Atome 2 und 3 phosphoryliert sein. Die Ergebnisse dieser Arbeit zeigen mittels zweier unabhängiger Methoden, dass Glykogen auch am Glukosyl-Kohlenstoff 6 phosphoryliert ist, der Phosphatposition, die in der Stärke am häufigsten vorkommt. Die Tatsache, dass in dieser Arbeit Phosphat neben Stärke auch erstmals an Glukosylresten von anderen pflanzlichen Kohlenhydraten (wasserlösliche Heteroglykane) nachgewiesen werden konnte, lässt vermuten, dass Phosphorylierung ein generelles Phänomen bei Polysacchariden ist. Des Weiteren wiesen die Ergebnisse darauf hin, dass Phosphat im Glykogen, wie auch in der Stärke, einem bestimmten Zweck dient, der im Zusammenhang mit der Regulation von Kettenverzweigung steht, und dass kein zufälliges biochemisches Ereignis für den Einbau verantwortlich sein kann. Aufgrund der grundlegenden Ähnlichkeiten im Stärke- und Glykogenstoffwechsel, liegt es nahe, dass die Phosphorylierung von Glykogen, ähnlich der von Stärke, ebenfalls durch spezifische Enzyme bewirkt wird. Ein besseres Verständnis der Mechanismen, die der Glykogen-Phosphorylierung zugrunde liegen, kann neue Möglichkeiten der Behandlung von Lafora disease aufzeigen.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Felix Nitschke
URN:urn:nbn:de:kobv:517-opus-67396
Advisor:Martin Steup
Document Type:Doctoral Thesis
Language:English
Year of Completion:2013
Publishing Institution:Universität Potsdam
Granting Institution:Universität Potsdam
Date of final exam:2013/08/23
Release Date:2013/09/02
Tag:Glykogen; Lafora disease; NMR; Phosphorylierung; Stärke
Lafora disease; NMR; glycogen; phosphorylation; starch
RVK - Regensburg Classification:WD 5560
RVK - Regensburg Classification:YH 6304
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Licence (German):License LogoCreative Commons - Namensnennung, Nicht kommerziell, Weitergabe zu gleichen Bedingungen 3.0 Deutschland