• search hit 2 of 47
Back to Result List

A Salinity Threshold Separating Fungal Communities in the Baltic Sea

  • Salinity is a significant factor for structuring microbial communities, but little is known for aquatic fungi, particularly in the pelagic zone of brackish ecosystems. In this study, we explored the diversity and composition of fungal communities following a progressive salinity decline (from 34 to 3 PSU) along three transects of ca. 2000 km in the Baltic Sea, the world’s largest estuary. Based on 18S rRNA gene sequence analysis, we detected clear changes in fungal community composition along the salinity gradient and found significant differences in composition of fungal communities established above and below a critical value of 8 PSU. At salinities below this threshold, fungal communities resembled those from freshwater environments, with a greater abundance of Chytridiomycota, particularly of the orders Rhizophydiales, Lobulomycetales, and Gromochytriales. At salinities above 8 PSU, communities were more similar to those from marine environments and, depending on the season, were dominated by a strain of the LKM11 groupSalinity is a significant factor for structuring microbial communities, but little is known for aquatic fungi, particularly in the pelagic zone of brackish ecosystems. In this study, we explored the diversity and composition of fungal communities following a progressive salinity decline (from 34 to 3 PSU) along three transects of ca. 2000 km in the Baltic Sea, the world’s largest estuary. Based on 18S rRNA gene sequence analysis, we detected clear changes in fungal community composition along the salinity gradient and found significant differences in composition of fungal communities established above and below a critical value of 8 PSU. At salinities below this threshold, fungal communities resembled those from freshwater environments, with a greater abundance of Chytridiomycota, particularly of the orders Rhizophydiales, Lobulomycetales, and Gromochytriales. At salinities above 8 PSU, communities were more similar to those from marine environments and, depending on the season, were dominated by a strain of the LKM11 group (Cryptomycota) or by members of Ascomycota and Basidiomycota. Our results highlight salinity as an important environmental driver also for pelagic fungi, and thus should be taken into account to better understand fungal diversity and ecological function in the aquatic realm.show moreshow less

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Keilor Rojas-JimenezORCiDGND, Angelika Rieck, Christian WurzbacherGND, Klaus JürgensGND, Matthias LabrenzGND, Hans-Peter GrossartORCiDGND
DOI:https://doi.org/10.3389/fmicb.2019.00680
ISSN:1664-302X
Parent Title (English):Frontiers in Microbiology
Publisher:Frontiers Media
Place of publication:Lausanne
Document Type:Article
Language:English
Date of first Publication:2019/03/29
Year of Completion:2019
Release Date:2019/09/18
Tag:baltic sea; brackish waters; chytridiomycota; cryptomycota; fungal diversity; salinity gradient
Volume:10
Pagenumber:9
Funder:Universität Potsdam
Grant Number:PA 2019_35
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Peer Review:Referiert
Grantor:Publikationsfonds der Universität Potsdam
Publication Way:Open Access
Licence (German):License LogoCreative Commons - Namensnennung, 4.0 International
Notes extern:Zweitveröffentlichung in der Schriftenreihe Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe ; 739